A REVIEW PAPER ON SMART GRID – THE PRESENT AND FUTURE OF SMART PHYSICAL PROTECTION

Dilip Kumar¹, Kalpit Verma², Manjeet Singh³

^{1, 2}Students, Electrical Engineering Department Greater Noida Institutes of Technology, Gr.Noida, (India) ³Assistant Professor, Electrical Engineering Department Greater Noida Institutes of Technology, Gr. Noida, (India)

ABSTRACT

Smart grid is regarded as future of power grid.. It provides flow of electricity and information in both direction, with improving the grid reliability, security, and efficiency of electrical system from generation to distribution. This article reviews on the current state-of- technology in physical protection. This article also focuses on the system reliability analysis and failure in protection mechanism..

Topics: Smart Grid, Physical Protection, System Reliability Analysis, Failure In Protection Mechanism

I. INTRODUCTION

Modern society needs reliable and affordable electrical power. The electrical power systems cater the demands in wide range of areas which include the components such as generators, transformers, transmission lines, motors and *etc*. The availability of new technologies has made a smarter, more efficient and sustainable grid to ensure a higher trusty of electrical power supplied to users. Smart grid has transformed the interconnected network between electricity consumers and electricity suppliers. The smart grid system involves transmission, distribution and generation of electricity. In a smart grid, the operation of power systems infrastructure has evolved into a dynamic design instead of a static design.

As this technology is expanding throughout the world, realization in smart grid protection is important. Protection plays an important role to ensure realization of its reliability and efficiency in generation, transmission, distribution network. In view of theincreasing capability of Smart Grid with its smart infrastructure and management, the role of Smart Grid in a protection system which supports the failure protection mechanisms effectively and efficiently. The physical protection in smart grid is discussed in section 3, along with the review of the current-state. Section 4 is the discussion on the protection in general. Finally, Section 5 makes the conclusion.

II. OVERVIEW OF SMART GRID

A grid which provides bi -directional flow of electricity and information, with improving the power grid reliability, security, and efficiency of electric system from generation to distribution. It is driven by the need to provide a more robust, flexible and efficient electric system to overcome the increasing demand of electricity, uprising treat from green house gases emission, depletion of energy resources and other rising issues in traditional grid .With comparing to a traditional power grid ,smart grid enables the (i) integration of renewable energy resources at distribution network, (ii) supervisory control and real-time status monitoring on the power network, (iii) self-monitoring and (iv) self-healing feature, adaptive response to fault and etc.

2.1 Structure of Smart Grid

Structure of smart grid is shown in Figure 1. It has four parts which are generation, transmission, distribution and control network [1]. Various locations are interconnected to network, information exchange and communicates through smart communication subsystem such as an access point with wired or wireless communication infrastructure. Raw information on the network healthiness or performance is obtained from smart information subsystem such as a smart meter, sensor and phasor measurement unit (PMU). The control network provide eal time network monitoring, management and control are performed at such as the electric utility control center. Besides that, a distribution network can be an individual when dispersed generation (DG) (renewable energy resources) is embedded, that allowing electricity supply from both DG and utility.

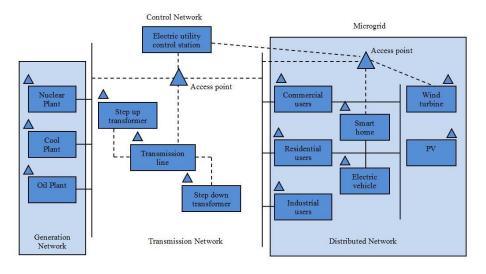


Figure 1. Structures of Typical smart grid

2.2 Characteristics of Smart Grid

Three smart grid describes in this subsection, characteristics namely grid self healing ability, formation of Microgrid system and enable embedded distributed generation (DG).

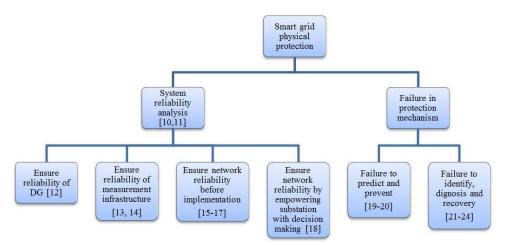
2.2.1 Self-Healing Ability of Grid : According to the National Institute of Standards and Technology (NIST), the ability to "self-heal" in the event of failure which is an important characteristic of Smart Grid [5]. Self healing is the ability of allowing the grid to reconfigure itself or restore automatically to permit an uninterrupted power flow during occurrence of outage [6].

2.2.2 Microgrid System Formation : Microgrid is an emerging paradigm for smartgrid in distribution network [4]. Normal and islanded operations are the two boundary. A Microgrid is connected to the electric utility network during normal operation, whereas in islanded operation Microgrid operates on its own, with electricity supply from DG or storage devices. It has the ability to operate during loss of main, islanded operation and isolate Microgrid from electric utility disturbance. Thus it provides a reliable electricity supply. This characteristic allow smart grid to be able to maintain its stable operation and deal with emergency problems [7].

2.2.3 Enabling of Embedded DG: It has the characteristic for DG which has beenkeeptinto distribution network. This characteristic enhance the use of green energy sources from renewable and also enables customer interaction. In addition, DG also serves as the main supply during operation of islanding for Microgrid.

2.3 Standard of Smart Grid

According to the Energy Independence and Security Act of 2007 (EISA) and Cabinet-level National Science and Technology Council (NSTC) report [5], the standards for Smart Grid help to ensure that the investments in the Smart Grid remain valuable in the future which include to catalyze its innovations, to support users choice, to create economies of scale to reduce costs, and to open global markets for Smart Grid devices and systems. Smart Grid standards are developed by groups of experts, namely as standards-setting organizations (SSOs) or standards development organizations (SDOs). To develop new standards and to update the current standards, these groups of experts from each industry come together from different nation to discuss At the present, there are many of standards in both technical and non -technical aspects, over 25 SSOs and SDOs are involved. These SSOs and SDOs include institutions such as The Institute of Electrical and Electronic Engineers (IEEE), International Electrotechnical Commission (IEC), International Organisation for Standardisation (ISO), National Electrical Manufacturers Association (NEMA), International Telecommunication Union (ITU), American National Standard for Protocol Specification (ANSI) and etc. IEEE 2030 (approved by the American National Standards Institute (ANSI) in 2011) and its associated standards which addresses Smart Grid interoperability, is the standard that provides a roadmap at establishing the framework on cross-cutting technical disciplines in power applications and informationexchange and control through communications. IEEE 2030 provided the guidelines for defining Smart Grid interoperability in the necessity of integrating energy technology, information and communications technology as a whole.


III. PHYSICAL PROTECTION OF SMART GRID

The protection of physical infrastructures in Smart Grid is called physical protection. It addresses the unplanned which compromises of grid infrastructure due to the failures of equipment, system and network, human errors, natural disasters and unexpected phenomena. With the review of system reliability analysis and followed by the discussion on failure in protection mechanism this section starts. The problem is revealed in each subsection and also addressed some potential solutions. The work carried in this section is classified in Figure 2.

3.1 Analysis

In the context of bulk power system, North American Electric Reliability Corporation (NERC) define system reliability as the ability of a system to meet the electricity needs by maintaining continuity and stable supply of electricity, even when unexpected equipment failures or other factors occurred [10]. System reliability is a topic

that cannot be neglected, it is important in power grid research, design and development. A major blackout incident was happened in Malaysia (13 January 2005) due to circuit breaker failure in protecting the busbar, resulting 6,230 MW (54%) total load loss in the affected region and 3.5million customers were affected in this incident [11]. Hence, it is need in improving the system reliability, and it is expected that in future smart grid will provide enhancement with better system reliability operation and smarter failure protection mechanism.

Figure 2. Classification of Smart Grid Physical Protections

There are several methods in ensuring system reliability, (i) by ensuring the reliability of distributed generation (DG) in distribution network, (ii) by ensuring the reliability of measurement infrastructure and (iii) by ensuring the network reliability before implementation. Besides that, (iv) by enabling substation to have the ability to perform decision-making is also another key to ensure system reliability.

3.1.1 Ensuring Reliability of DG: It is expected that the embedded or dispersed ordistributed generation (DG) such as small scale generation from renewable energy resources, will be widely be used in smart grid. As the integration of DG into distributed network increases, the risk in distributed network increases. The risk compromises of distribution network reliability and stability, resulting from the use of fluctuant and infrequent renewable resources. To analyze the reliability of DG, Chen et al., [12] proposed a method that use simulation model which gradually increase of local generators in smart grid, to reduce the cascading failures resulted from DG. The model concept is, as loads in distribution network are being served locally by individual local generators (similar to Microgrid architecture), less power flow interruptions within entire power grid, this enhances the reliability and stability of smart grid. They obtained satisfactory result which dramatically reducing the likelihood of cascading failures in smart grid.

3.1.2 Ensuring Reliability of Measurement Infrastructure: To enable smart gridoperation, a smart measurement infrastructure is required. It served as the input for smart grid with monitoring and sensing ability, to observe network healthiness, reliability and stability. A phasor measurement unit (PMU) is one of smart measurement unit. PMUs have been widely used in wide-area measurement system (WAMS) for monitoring, control and protection function in smart grid. To analyze the reliability of WAMS, Wang et al., [13] presented a quantify reliability evaluation method for WAMS, using combined Markov modeling and state enumeration techniques to evaluate WAMS reliability. The proposed idea of reliability evaluation covers the backbone communication network in WAMS and also the overall WAMS from a hardware reliability viewpoint. For verification, the WAMS evaluation method was demonstrated in the IEEE 14-bus system. It was proven that the

evaluation method to be dependable in providing useful information to improve the reliability of WAMS and recognize the reliability of WAMS-based control scheme which require different information set.

3.1.3 Ensuring Network Reliability before Implementation: The more accurate and precise a simulation platform can be used to emulate the actual case. Therefore, the behavior and performance of smart grid can be understood better. Simulation of system reliability provides the preview of the system advantages, weaknesses and potential short coming before implementation. This ensure the system to be implemented is reliable and stable, through the evaluation and decision making based on the simulation results. But the question is how to create a simulation system which is accurate, precise, wide, flexible, adoptable and scalable? Godfrey *et al.*, [15] proposed a wide modeling method of targeting in smart grid applications with co-simulation, which focuses on communication and power network in smart grid to provide the means to examine the effect on communication failures. Their simulation method enables the investigation of wide range of smart grid issues with high capability and accuracy in addressing the communications latency adversely impact to the expected behavior later in power system.

In addition, Ghosn*et al.*, [16] designed an agent-oriented architecture for simulation, primarily focuses on selfhealing problem, with an incremental method that begins with simulating a local Microgrid. Their architecture enables scalable and adaptable design that grows hierarchically into a more complete model. Such architecture also enables smart grid developer and designer to understand the weaknesses, potential short coming issues and identify the way to improve the electrical grid. With their agent -oriented architecture, they able to present software design issues that must be considered in producing a system that is flexible, adaptable and scalable.

3.14 Ensure Network Reliability by Empowering Substation with Decision Making: By empowering substation with the ability to perform decision making, thesystem could response by itself first without waiting for instruction from control network. This enables the substation to resolve the issue in the shortest possible time and ensure the reliability of the network. However, safety and precaution is necessary, the failure in performing the right decision is crucial. To ensure network reliability while minimizing failure in decision making, Overman*et al.*, [18] defined a multilevel framework trust model with reasonable compromises in both the failure and reliability. They suggested that distributed decision making ability to substation and/or field devices, by pre-load the substation and/or field devices with sufficient information for Seif governing action, in the event of system failure without having to wait for instruction from control network. In their research, they have proven that by pre-loading the substation and/or field device with a set of "next actions to be taken" instructions, when attached in distributed rather than startified communication architecture, the proposed model could significantly increase the grid reliability, while at the same time reduce real time impact from loss of reliable control.

3.2 Failure in Protection Mechanism

Two topic are consist of protection mechanism, (i) prediction and prevention of failure and (ii) identification, diagnosis and recovery of failure. Prediction and prevention of failure are the actions of attempting to predict failure location and prevent failures from occurring. If fail to prevent failure from occurring, identification, diagnosis and recovery are required to restore network from failure to normal operation, in the fastest possible time. In this subsection, both the protection mechanism briefly reviewed.

3.2.1 Failure to Predict and Prevent: For smart grid to operate efficiently and effectively, accurate in

predicting the failure location and preventing failure from occurring is important. One approach to predict the failure location is to locate the weak points in smart grid. Chertkovet al., [19] have developed an approach to efficiently predict power grid weak points, and identify probable failure mode in static load distribution. They applied the approach into two system, Guam's power system and IEEE RTS-96 system. In each of the system, its static power flow is modeled and analyzed. Their finding concluded that this technique could provide an accurate predictive capability in locating the problematic links based on different failure mode of load operation. In addition, they also observed that this approach has an improved reliability in the respective power system.

Besides accurately predicting the weak point, accurate forecasting of short circuit fault and predicting its magnitude in smart grid are also important in preventing network failure. Chen [20] introduced the artificial neural network (ANN) to perform short-circuit current prediction in power distribution systems. The formulated model was verified through computer simulation and the algorithm was demonstrated on hardware system based on TMS320F2812-DSP. The algorithm was proven to be effectively in predicting the magnitude of short circuit in the shortest possible time.

3.2.2 Failure to Identify, Diagnose and Recover: If failure occurred, it must be identified quickly in the shortest possible time, to avoid further damaging or cascading of event. Once the failure has been located, it must be diagnosed in order to search for the root caused and response to the failure by recovering. When the fault is cleared, the network must be resynchronized and restored the failure region back to normal operation. Calderaroet al., [21] presented a method to identify and localize failure in smart grid, based on the design of Petri Net (PN) theory. This method detects the failure in data transmission and fault in distribution network, through means of matrix operation, from the captured modeling data in distribution network. In their research, they have verified the method with two case studies. Through the verification, they demonstrated its effectiveness and discovered the method is able to remove a lot of complexity associated in data analysis and permit quick assessment and evaluation of information, while avoiding occurrence of cascading failures in power system protection. They also added on that the proposed detection strategy is consistent with the current trend and direction in smart grid development. Therefore, they were looking forward on the model to be adopted in smart grid protection.

3.2.2.1 Failure diagnosis: Caiet al., [22] realized the critical step in distribution faultdiagnosis, comes from the proper selection of features to identify the root cause of failure. Hence, they carried out the literature reviews on some popular features of selection methods such as (i) Hypothesis test, (ii) stepwise regression, (iii) stepwise selection by Akaike's Information Criterion, and (iv) LASSO/ALASSO, and evaluated these methods with real world datasets to identify each method advantages and limitations for fault diagnosis. They concluded that there was no single method that was best for all cases, but each of the method had its own potential in the particular case. Nevertheless, the features selection method can be served as a meant of failure diagnosis for engineers to find out information that may be hidden under the massive data rather than producing some feature that cannot be understood or explained.

3.2.2.2 Failure Recovery: The ability of self-healing in the event of failure is animportant feature in smart grid. When failure occurs, a self -healing reconfiguration in smart grid splits the power network into a self sufficient islanded network to stop the propagation of failure and avoid cascading event. For failure recovery

within the islanded network, Li et al., [23] presented a self-healing system reconfiguration technology with proposed of an area partitioning algorithm, to minimize the power imbalance between generation (DG) and load in islanded network. From their research, they found that the algorithm is computationally efficient, and by appropriately control the system reconfiguration the overall efficiency in system restoration can be improved. On the other hand, to enable smart grid operation, smart meter is another main smart infrastructure for smart grid. Failure due to load data loss or corruption in smart meter might likely to occur. Thus, recovering of these missing or corrupted data in smart meter is necessary and is important, because the data contained vital information for daily system analysis, decision making and smart grid operation. Chen et al., [24] addressed the issue by presenting a B-Spline smoothing and Kernel smoothing based techniques to automatically cleanse the corrupted and missing data. They evaluated the method on real British Columbia Transmission Corporation (BCTC) load curve and they demonstrated that their method is effective.

IV. DISCUSSION

Section 3 reviews and discusses the current state -of-art of physical protection in terms of system reliability analysis and failures in protection mechanism. Ensuring of system reliability is important in realizing effective and efficient means of smart grid operation. The development of protection mechanism to resist the attacks and failure is also necessary in order to maintain the continuity of supply as well as ensure stability and reliability operation of smart grid. Although realization of the importance in each of the topic is essential, its challenges must also be addressed. Therefore, the challenge in each of the topic is discussed and some possible solutions to overcome the challenges are provided.

Ensuring system trust is important, but it poses the increase in system reliability risk. Moslehiet al., [25] critically reviewed the reliability impacts of major smart grid resources and he observed that an ideal mix of these resources could lead to a flatter net demand which will eventually accentuates reliability challenges further and making it more susceptible to failure. Flatter net demand implies that the grid is operating close to its near peak load condition at most of the time; operating close to the boundary of saturation or breakdown. These consequences are from the impacts of increasing consumption of energy and asset utilization, which is an unavoidable situation if the development of smart grid continues. Since in flatter net demand, grid is operating at the boundary of breakdown, we can address this issue by developing an effective approach, to construct and compute the margin before the boundary. And with a real-time monitoring system, the margin level can be known instantaneously, and we could response in advance to minimize system reliability risk. Besides that, maximizing asset utilization could lead to reduction in the margin level, thus we must ensure the balance in asset utilization to guarantee the maximizing level provide a reasonable margin.

On the other hand, ensuring proper protection mechanism is important, but it poses the increase of complexity in decision making process. Assuming in smart grid, there are millions and millions of node. In order to process the failure, smart grid have to solve a lot of complex decision problems in the fastest possible time to avoid any further damage or cascading event. To address this challenge, a possible solution is to introduce more decision making systems into the network, so that each s ystem focuses in processing its respective region locally. This can decrease the complexity in decision making process and also reduce the failure response time. Each of this system will also communicate with one another, to ensure an optimum decision making in the global network.

Throughout the literature review, two lessons were obtained. Firstly, system reliability is a topic that cannot be neglected, it is important in power grid research, design and development. Consequences of low system reliability may result network failure (endangering human), and possibly even blackout of whole network (bringing discomfort to consumer and affecting industrial and commercial progress). To ensure system reliability, adaptive protection mechanisms in detecting failur e play an important role. Because these adaptive protection mechanisms are the one to sense and response to the failure; if a weak protection mechanism is use, the reliability and stability will also be weak. Therefore proper consideration between protection mechanisms for reliability of system is required, to ensure the operation of smart grid to be effective and efficient.

Next, another lesson learnt is that new technology and infrastructure are introduced and deployed for smart grid, the possible risks and challenges must also be assessed. This is to ensure an efficient and effective operation of smart grid with higher security, reliability and stability. For instance, although ensuring system reliability is important, however the increase of system reliability risk may be introduced from the mix of sources in smart grid. Besides that, we also observed that the usage of smart metering itself although enable fast tracking of customer power usage, it may also introduce failure. Therefore, a throughout assessment on the new technologies and infrastructure is necessary.

V. CONCLUSION

In this article, the literature review of current state -of-art in physical protection is presented. In order to realize a reliable and stable smart grid operation, the article alsofocuses in system reliability analysis and failure in protection mechanism. Although smart grid enable power grid to be empowered with intelligent and advanced capabilities, it alsoopens up many new challenges and risks. Hence some challenges and risks in both topics are also briefly discussed, along with possible solution to overcome it. However, more in depth and throughout research in the physical protection system is required to ensure the operation of smart grid to be reliable and stable.

REFERENCE

- [1] T. F. Garrity, "Innovation and trends for future electric power systems", Power Systems Conference, 2009. PSC'09, (2009), pp. 1-8.
- [2] M. Hashmi, S. Hanninen and K. Maki, "Survey of smart grid concepts, architectures, and technological demonstrations worldwide", 2011 IEEE PES Conference on Innovative Smart Grid Technologies (ISGT Latin America), (2011), pp. 1-7.
- [3] H. Farhangi, "The path of the smart grid", IEEE Power and Energy Magazine, vol. 8, no. 1, (2010), pp. 18.
- [4] X. Fang, S. Misra, G. Xue and D. Yang, "Smart Grid The New and Improved Power Grid: A Survey", IEEE Communications Surveys & Tutorials, vol. 14, no. 4, (2012), pp. 944-980.
- [5] National Institute of Standards and Technology, "NIST framework and roadmap for smart grid interoperability standards", release 2.0., (2012) February.
- [6] Y. Oualmakran, J. Melendez and S. Herraiz, "Self-healing for smart grids: Problem formulation and considerations", 2012 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), (2012), pp. 1-6.

- [7] R. Hassan and G. Radman, "Survey on Smart Grid", Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon), (2010), pp. 210-213.
- [8] T. Basso, J. Hambrick and D. DeBlasio, "Update and review of IEEE P2030 Smart Grid Interoperability and IEEE 1547 interconnection standards", 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), (2012), pp. 1-7.
- [9] M. I. Ridwan, M. H. Zarmani, R. M. Lajim and A. Musa, "TNB IEC 61850 System Verification and Simulation (SVS) laboratory: Enabler to a successful smart grid implementation", 2012 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), (2012), pp. 1-6.
- [10] C. S. Bogorad and L. M. Nurani, "NERC'S DEFINITION OF THE BULK ELECTRIC SYSTEM", Spiegel &Mcdiarmid LLP, (2012).
- [11] Z. B. Shukri, "WADP System Protection", Asia-Oceania Regional Council of CIGRE, (2012).
- [12] X. Chen, H. Dinh and B. Wang, "Cascading Failures in Smart Grid Benefits of Distributed Generation", Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on, (2010), pp. 73-78.
- [13] Y. Wang, W. Li and J. Lu, "Reliability Analysis of Wide-Area Measurement System", IEEE Transactions on Power Delivery, vol. 25, no. 3, (2010), pp. 1483-1491.
- [14] M. Vaiman, M. Vaiman, S. Maslennikov, E. Litvinov and X. Luo, "Calculation and Visualization of Power System Stability Margin Based on PMU Measurements", 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), (2010), pp. 31-36.
- [15] T. Godfrey, S. Mullen, R. C. Dugan, C. Rodine, D. W. Griffith and N. Golmie, "Modeling Smart Grid Applications with Co-Simulation", 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), (2010) October 4-6, pp. 291-296.
- [16] S. B. Ghosn, P. Ranganathan, S. Salem, J. Tang, D. Loegering and K. E. Nygard, "Agent-Oriented Designs for a Self Healing Smart Grid", 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), (2010), pp. 461-466.
- [17] H. A. Yusof, A. Musa, A. Q. Ramli and M. I. Ridwan, "Teleprotection simulation lab: Understanding the performance of telecommunication aided protection systems under impaired telecommunication network conditions", 2012 IEEE International Conference on Power and Energy (PECon), (2012), pp. 655-660.
- [18] T. M. Overman and R. W. Sackman, "High Assurance Smart Grid: Smart Grid Control Systems Communications Architecture", 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), (2010), pp. 19-24.
- [19] M. Chertkov, F. Pan and M. G. Stepanov, "Predicting Failures in Power Grids: The Case of Static Overloads", IEEE Transactions on Smart Grid, vol. 2, no. 1, (2011), pp. 162-172.
- [20] L. -A. Chen, "Prediction for Magnitude of Short Circuit Current in Power Distribution System Based on ANN", 2011 International Symposium on Computer Science and Society (ISCCS), (2011), pp. 130-133.