

419 | P a g e

OPC: OLE FOR PROCESS CONTROL

Renuka C.Gandhi
1
, Abhay Kumar Shah

2

1,2
Assistant Professor.,G.N.I.O.T,Greater Noida, (India)

ABSTRACT

OPC stands for OLE (Object Linking and Embedding) for Process Control the OPC is a technical specification

that defines a set of standard industrial software interfaces based upon Microsoft's OLE/COM technology. The

application of the OPC specification makes possible data exchange and interoperability between field

systems/devices, automation/control systems and manufacture management software. Traditionally, each

software or application developer was required to write a custom interface, or driver, to exchange data with

hardware field devices. OPC eliminates this requirement by defining a common, high performance interface

that permits this work to be done once, and then easily reused HMI,SCADA,control and custom applications. An

OPC is based on server/client architecture. End users expect 24/7 reliability, full data information integrity and

validated, secure interoperability. OPC standardizes the communication of process control data. It standardizes

on technology rather than product, also it provides true interoperability and scalability as well as reduces the

implementation time and costs. This paper provides the idea about the OPC, what is OPC, overview of the OPC

Specification and how to apply it in process application (along with PLC & SCADA). It describes the basic

concepts and advantages of the OPC technology and introduces the latest developments of the OPC.

I. INTRODUCTION

This seminar serves as an overview to OPC. It gives background information, motivation, architectural

highlights and an abstract for each OPC topic. It describes the purpose of OPC and why and how both vendors

and customers have advantages in using OPC. Also it provides a technical overview, describing the

fundamentals of the design and characteristics of OPC components and describes the way OPC supports

browsing of servers both locally and on remote machines. With PLC and SCADA the controlling and

monitoring of the process has made the industry to take a breath relief. With the use of PLC and SCADA the

controlling and monitoring of process has made the industry to take a breath of relief. With the use of OPC

along with it, load on the data sources has been reduced and the data is available for different application like

SCADA, HMI, Historical data access &Visual Basic -6.

What Is OLE for Process Control?

OLE™ for Process Control (OPC) is a standards-based approach for connecting data sources (e.g., PLCs,

controllers, I/O devices, databases, etc.) with HMI client applications (graphics, trending, alarming, etc.). It

enhances the interface between client and server applications by providing a universally supported and well-

documented mechanism

420 | P a g e

to communicate data from a data source to any client application. Included are not only a detailed guide on how

to pass the data, but also specific information on other attributes to supplement those data, such as range

information, data type, quality flags, and date and time information.

Any OPC client application can connect to any OPC server. In other words, OPC offers true Plug-and-Play

capability in the fields of HMI and industrial automation. OPC server types include OPC Data Access (DA),

OPC Alarm and Events (AE), and OPC Historical Data Access (HDA).

II. OPC OVERWIEW

2.1 Opc Server

An OPC Server is a software application that acts as an API (Application Programming Interface) or protocol

converter. An OPC Server will connect to a device such as a PLC, DCS, RTU, or a data source such as a

database or User interface, and translate the data into a standard-based OPC format. OPC compliant applications

such as an HMI, historian, spreadsheet, Trending application, etc can connect to the device data. An OPC Server

is analogous to the role a printer driver plays to enable a computer to communicate with an ink jet printer. An

OPC Server is based on a Server/Client architecture shown in Figure 1.1.

Figure 1.1: Server Client Architecture

2.2 Opc Background

OPC standardizes the communication of process control. For example, Manufacturer have many different data

sources such as PLC, DCS, GAUGES, RTU & DATABASES, this data is available through different

connections such as Serial, Ethernet or radio transmission and others, different operating systems like

Windows, Unix, DOS & VMS have also been used by different process application as shown in the Figure 2.2

Figure.2.2: Different Types of Connections Used by Different Process Application

http://en.wikipedia.org/wiki/API
http://en.wikipedia.org/wiki/Programmable_logic_controller
http://en.wikipedia.org/wiki/Remote_Terminal_Unit
http://en.wikipedia.org/wiki/User_interface

421 | P a g e

In the past vendors would capture this data in their own application using their own device interfaces. The data

would be kept in proprietary format which could mean that you would only access your data using tools from

the same vendor who originally launched the data you would then be forced to return to that vendor every time

you needed a system change or expansion, shown in Figure2.3.

Figure 2.3: Traditional way of capturing the data.

In contrast OPC standardizes on technology rather than product, by using OPC set of standard data can be

passed from any data source to any OPC complaint application. This application may include HMI, Trenders,

spread sheet, data archives, ERP & RTU. OPC is a communication standard that provides true interoperability

and scalability. This enables you to visualize, analyze, report or whatever you want with applications from any

vendor using one or more OPC specifications. By selecting the standard base OPC technology you enable true

interoperability and scalability reduce implementation time and cost and built a full scalable system for future.

2.3 Opc For Heterogeneous Network

A standard mechanism for communicating to numerous data sources, either devices on the factory floor, or a

database in a control room is the motivation for OPC. The information architecture for the Process Industry

shown in Figure 2.4., involves the following levels:

Figure2.4: Process Control Information Architecture

 Field Management With the advent of “smart” field devices, a wealth of information can be provided

concerning field devices that were not previously available. This information provides data on the health of a

device, its configuration parameters, materials of construction, etc. All this information must be presented to the

user, and any applications using it, in a consistent manner.

422 | P a g e

Process Management The installation of Distributed Control Systems (DCS) and SCADA systems to monitor

and control manufacturing processes makes data available electronically which had been gathered manually.

Business Management Benefits can be gained by installing the control systems. This is accomplished by

integrating the information collected from the process into the business systems managing the financial aspects

of the manufacturing process. Providing this information in a consistent manner to client applications minimizes

the effort required to provide this integration. To do these things effectively, manufacturers need to access data

from the plant floor and integrate it into their existing business systems. Manufacturers must be able to utilize

off the shelf tools (SCADA Packages, Databases, spreadsheets, etc.) to assemble a system to meet their needs.

The key is an open and effective communication architecture concentrating on data access, and not the types of

data.

2.3.1 Purpose of OPC

What is needed is a common way for applications to access data from any data source like a device or a

database. OPC Server in this figure and in the following sections is used as synonym for any server that

provides OPC interfaces, e.g., OPC DataAccess Server, OPC Alarm&Event Server, OPC HistoricalData Server.

A. The Current Client Application Architecture:

There are many client applications that have been developed that require data from a data source and access

that data by independently developing “Drivers” for their own packages.

This leads to the problems that follow:

 Much duplication of effort Everyone must write a driver for a particular vendor’s hardware.

 Inconsistencies between vendor’s drivers Hardware features not supported by all driver developers.

 Support for hardware feature changes A change in the hardware’s capabilities may break some drivers.

 Access Conflicts Two packages generally cannot access the same device simultaneously since they each

contain independent drivers.

Hardware manufacturers attempt to resolve these problems by developing drivers, but are hindered by

differences in client protocols. Today they cannot develop an efficient driver that can be used by all clients.

OLE for Process Control (OPC) draws a line between hardware providers and software developers. It

provides a mechanism to provide data from a data source and communicate the data to any client

application in a standard way. A vendor can now develop a reusable, highly optimized server to communicate

to the data source, and maintain the mechanism to access data from the data source/device efficiently. Providing

the server with an OPC interface allows any client to access their devices.

B. The Custom Application Architecture:

A growing number of custom applications are being developed in environments like Visual Basic (VB), Delphi,

Power Builder, etc. OPC must take this trend into account. Microsoft understands this trend and designed

OLE/COM to allow components (written in C and C++ by experts in a specific domain) to be utilized by a

custom program (written in VB or Delphi for an entirely different domain). Developers will write software

components in C and C++ to encapsulate the intricacies of accessing data from a device, so that business

application developers can write code in VB that requests and utilizes plant floor data. The intent of all

specifications is to facilitate the development of OPC Servers in C and C++, and to facilitate development of

OPC client applications in the language of choice. The architecture and design of the interfaces are intended to

support development of OPC servers in other languages as well.

423 | P a g e

C. General:

OLE for Process Control (OPC™) is designed to allow client applications access to plant floor data in a

consistent manner. With wide industry acceptance OPC will provide many benefits:

 Hardware manufacturers only have to make one set of software components to utilize in their application.

 Software developers will not have to write drivers because of feature changes or additions in new release

hardware.

 Customers will have more choices with which to develop World Class integrated manufacturing systems.

With OPC, system integration in a heterogeneous computing environment will become simple. Leveraging

OLE/COM the environment shown in Figure 2.5 becomes possible.

Figure 2.5: Heterogeneous Computing Environment

2.4 Scope

A primary goal for OPC is to deliver specifications to the industry as quickly as possible. With this in mind, the

scope of the first document releases is limited to areas common to all vendors. Additional functionality will be

defined in future releases. Therefore, the first releases focus on

 Online Data Access, i.e., the efficient reading and writing of data between an application and a process

control device flexibly and efficiently;

 Alarm and Event Handling i.e., the mechanisms for OPC Clients to be notified of the occurrences of

specified events and alarm conditions, and

 Historical Data Access, i.e., the reading, processing and editing of data of a historian engine.

Functionality such as security, batch and historical alarm and event data access belong to the features which

are addressed in subsequent releases. The architecture of OPC leverages the advantages of the COM

interface, which provides a convenient mechanism to extend the functionality of OPC.

Other goals for the design of OPC were as follows:

 Simple to implement

 Flexible to accommodate multiple vendor needs

 Provide a high level of functionality

 Allow for efficient operation

The specifications include the following:

 A set of custom COM interfaces for use by client and server writers.

424 | P a g e

 Reference to a set of OLE Automation interfaces to support clients developed with higher level business

applications such as Excel, Visual Basic, etc

The architecture is intended to utilize the Microsoft distributed OLE technology (DCOM) to facilitate clients

interfacing to remote servers.

2.5 Opc Fundamentals

OPC is based on Microsoft’s OLE/COM technology.

2.5.1 OPC object & interfaces

This specification describes the OPC COM Objects and their interfaces implemented by OPC Servers. An OPC

Client can connect to OPC Servers provided by one or more vendors as shown in Fig. 2.6.

Fig. 2.6: OPC Client / Server Relationship

2.5.2 Current & Emerging Specification

 OPC Data Access:

The originals! Used to move real-time data from PLCs, DCSs, and other control devices to HMIs and other

display clients. The Data Access 3 specification is now a Release Candidate. It leverages earlier versions while

improving the browsing capabilities and incorporating XML-DA Schema.

 OPC Alarms & Events:

Provides alarm and event notifications on demand (in contrast to the continuous data flow of Data Access).

These include process alarms, operator actions, informational messages, and tracking/auditing messages.

 OPC Historical Data Access:

Where OPC Data Access provides access to real-time, continually changing data, OPC Historical Data Access

provides access to data already stored. From a simple serial data logging system to a complex SCADA system,

historical archives can be retrieved in a uniform manner.

 OPC Batch:

This specification carries the OPC philosophy to the specialized needs of batch processes. It provides interfaces

for the exchange of equipment capabilities (corresponding to the S88.01 Physical Model) and current operating

conditions.

 OPC Data eXchange:

This specification takes us from client/server to server-to-server with communication across Ethernet fieldbus

networks. This provides multi-vendor interoperability! And, oh by the way, adds remote configuration,

diagnostic and monitoring/management services.

 OPC Security:

All the OPC servers provide information that is valuable to the enterprise and if improperly updated, could have

significant consequences to plant processes. OPC Security specifies how to control client access to these servers

http://www.opcfoundation.org/Default.aspx/04_tech/04_spec_da.asp
http://www.opcfoundation.org/Default.aspx/04_tech/04_spec_alarms.asp
http://www.opcfoundation.org/Default.aspx/04_tech/04_spec_hda.asp
http://www.opcfoundation.org/Default.aspx/04_tech/04_spec_batch.asp
http://www.opcfoundation.org/Default.aspx/04_tech/04_spec_dex.asp
http://www.opcfoundation.org/Default.aspx/04_tech/04_spec_security.asp

425 | P a g e

in order to protect this sensitive information and to guard against unauthorized modification of process

parameters.

 OPC XML-DA:

Provides flexible, consistent rules and formats for exposing plant floor data using XML, leveraging the work

done by Microsoft and others on Web Services.

 OPC Complex Data:

A companion specification to Data Access and XML-DA that allows servers to expose and describe more

complicated data types such as binary structures and XML documents.

 OPC Commands:

A Working Group has been formed to develop a new set of interfaces that allow OPC clients and servers to

identify, send and monitor control commands which execute on a device.

 OPC Unified Architecture:

A new set of specifications that are not based on Microsoft COM that will provide standards based cross-

platform capability.

2.6 Where Opc Fits

Although OPC is primarily designed for accessing data from a networked server, OPC interfaces can be used in

many places within an application. At the lowest level they can get raw data from the physical devices into a

SCADA or DCS, or from the SCADA or DCS system into the application.. The architecture and design makes it

possible to construct an OPC Server which allows a client application to access data from many OPC Servers

provided by many different OPC vendors running on different nodes via a single object, shown in Figure 2.7.

Figure 2.7: Where OPC Fits

2.7 Benefits of Opc

When data acquisition devices conform to the OPC standard, you can use them with any OPC-enabled software

application. And vice versa. You can therefore easily combine different devices from different manufacturers in

one system, without the normal integration headaches. OPC gives you the freedom to add new hardware from

third-party vendors to existing set-ups, or to replace a device, without worrying about compatibility with your

chosen software. Select exactly the hardware and software you want for a particular application. Based on

Microsoft Windows technology, OPC now stands for Open Process Control. Previously it stood for OLE

Process Control but today the OLE technology has been replaced by Active X. The measurement and control

hardware (such as a Microlink) provides front-line data acquisition. As soon as the hardware device has

collected the data it makes it available to software applications running under Windows. It presents the data

according to the OPC standard, and is thus known as an OPC server. Each OPC server offers data in the same

way. If the software application can understand the OPC format it can therefore access data from any OPC

server device, making individual drivers for each piece of equipment obsolete. OPC-enabled software includes

http://www.opcfoundation.org/Default.aspx/04_tech/04_spec_xml.asp
http://www.opcfoundation.org/UA
http://www.microlink.co.uk/opc.html#Microlink
http://www.microlink.co.uk/opc.html#Microlink
http://www.microlink.co.uk/opc.html#Microlink

426 | P a g e

spreadsheets, databases, virtual instruments and SCADA (supervisory control and data acquisition) interfaces.

These applications are known as OPC client software. You can also develop your own Visual Basic programs to

exchange data with OPC servers. Your program will work with all OPC devices connected to your PC and on

the network. Each OPC server can simultaneously provide data for any number of OPC clients. Likewise

multiple clients can at the same moment access any server: a robust method of communication. With OPC,

measurement and control systems can share information and co-operate with other installations across factories,

offices, laboratories, etc. The same data is therefore readily available to engineering, maintenance,

management...in fact to anyone that requires up-to-the-minute data on which to base their decisions.OPC allows

"plug-and-play". All OPC devices will connect together and immediately work with the OPC client software.

This has the potential to massively reduce installation and system configuration time. It also means that you can

add devices without shutting down existing systems.

III. ICONICS MODBUS OPC SERVER 3.1

3.1 Introduction

The ICONICS Modbus OPC Server 3.1 is an OPC-compliant server that serves data to OPC clients. The

Modbus OPC server was implemented using advanced programming concepts of the current version of the OPC

specification for use in developing next generation industrial software applications.

Key features of the Modbus OPC Server 3.1 include:

 Flexible configuration for numerous tags.

 Tag values are persistent.

 Tags can be grouped in logical folders for manageability.

 Tags support configurable range information.

 Tags have configurable alarm conditions.

 Tag multiplier allows you to create hundreds of tags in seconds.

 Supports OPC Data Access (DA) and Alarm and Events (AE) specifications.

 OPC XML-DA wrapper installs with Modbus OPC Server

 TraceWorX32 diagnostics support (logging data into XML file)

 Sample OPC Client

 OPC Admin Utility

The Modbus OPC Server product contains two parts: a user interface configuration module and the actual OPC

server, the runtime module. The configuration module allows you to create a database that holds configuration

data of the tags. Such as the tag name, the ranging, and the alarm settings. The runtime module uses a runtime

database to access the actual values of the tags configured. Structures of both databases are indicated in the

following sections. Changes made to the configuration are accepted only after a restart of the OPC server.

However, changes made to the runtime database are accepted online.

3.2 Modbus Configurator

The screen consists of a split window with a tree control view in the left-hand pane and a configuration view in

the right-hand pane. The installation provides a default, configured Microsoft Access database file

427 | P a g e

("ModbusOPC.mdb") that provides a standard format for the configuration database. For a description of the

toolbar and menu functions, please see the sections below in Figure 3.1.

Figure 3.1: Modbus configurator Screen

Modbus is a serial communication protocol allowing connection of 247 devices on a serial line. There is always

one device (primary) controlling the communication. The rest consists of secondary devices. Every device is

identified by its unique address. Its registers are read as Input (1 bit long) or Input Register (16 bits), or written

to as Coil (1 bit) or Holding Register (16 bits). Registers of each type are addressed by using 16-bit numbers.

 Configuring Port: A port is equivalent to a physical serial port in the computer. To correctly configure

a port means to set up a serial port as a File name (COM 1, COM2, COM3, or COM4), communication

speed (Baud rate), and protocol characteristics: Transmission mode (ASCII or RTU), RTS flow control,

Stop bits and Parity scheme. When the Parity checking enabled check box is not checked, it will force the

server to ignore the parity bits in the message. As shown in Figure3.2

Figure 3.2: Modbus Configuration Screen for (Parity)

Every device is connected to particular port, so it logically creates the second level in the Address

Space tree. Each device is represented by its symbolic name, and is uniquely identified by the

Address value. It is impossible to have two devices with the same address connected to one port.

Setting up a device requires configuration of its unique address, type, timeouts and optimization

parameters, as shown in the figure below.

 Configuring Devices: Device Type: There is a group of six predefined standard device types enhanced

with other (Any) and Custom options. A device with the most limited parameters and the lowest

performance is called the other (Any) alternative. If you have devices that are among the list of predefined

Modicon types, use the Custom option and select one of the predefined device types from the Parameters

drop-down list. For instruction on how to create new or edit predefined devices, see the Device Parameters

section below. Figure 3.3.

428 | P a g e

 Timeouts: Timeout parameters (separately for reading and writing data) specify the period of time (in

milliseconds) the server will wait for a response from the device.

 Optimizations: The server tries to optimize the communication with the devices by requesting as much

data as possible in one message. Consecutive registers are merged together into one request for efficiency.

The server also can read registers that are not really requested, if this allows it to join two blocks of

requested registers. The numbers entered under Optimizations specify the maximum block length of

adjacent unused data.

A Data Item represents a register in the device or a range of registers. A symbolic name and description is

associated with the data item. An OPC client can obtain the data item description. The actual OPC item

name (tag) is compounded from the Address Space root, the names of the folder and its subfolders, and the

name of the data item. Data items can be located in any folder, even in the root of the address space.

 Address Space Logical Data Item: Name: A logical name for the data item (Setpoint, Param001,

ON_OFF, etc).

Description: A descriptive comment for the data item. Location

Type: Location type is a type of a register in the device. Device registers are divided into Coils, Inputs,

Input Registers and Holding Registers.

Modbus Type: The location type (device data) will be understood as Modbus type (OPC data type).

Modbus data type also depends on the Location type selected Example: Coil or Input (1 bit) device data

type could be Modbus BOOL only. When selecting Modbus String type, you must specify the data length

(how many bytes will the String is represented by).

Figure 3.4: Address Space Logical Data Item

 Simulation: To test the client functionality, choose a Simulation Signal from the Signal drop-down list

and check the Simulate check box. See the Simulation Signals section for information about creating

simulation signals. All levels in the Address Space (port, device, folder, data item) support the process

of simulation (Simulate check box). The parent list in the tree is superior; it has a higher priority when

deciding to simulate the data item or not. In other words, a data item is simulated, if it itself has a

simulation selected, or if any of its parents has the Simulate check box checked. (It may be simulated

even if its Simulate check box stays unchecked)Manual: If checked, the data item will offer constant

parameter value, because Manual setting is of the highest priority. The changes in the configuration

take effect only when the server reloads the configuration (on startup).

 Starting Address: This value specifies the data item address (register number) in the device data

space. With the UINT Modbus type, it is possible to extract bits from the register and use them as a

429 | P a g e

Boolean or integer value (this functionality is read-only). You can specify a group of Count adjacent

bits inside a word starting with Bit #. This way, it is possible to use a register for several separate data

items.

 Use Conversion: To get the data value converted according to a prescribed form, choose one of the

predefined or user-defined conversions. See the "Conversions" section for more details.

 Generate Alarms: Check the Generate Alarms check box to make the server generate alarms based on

the data item value. The Message Prefix parameter is the text of the message for this data item; it will

be followed by the text configured for a particular alarm type. The second part of the alarm message

will contain the Message Body string (see Alarm Definitions). The server allows having any number of

alarm definitions (templates) predefined. You can then combine one of them with the specific tags.

 Monitoring View: The Configurator includes a runtime monitor for viewing server data. To change to

the monitor view, select Monitor View from the View menu. The runtime monitor appears in the

bottom pane of the Configurator screen, as shown in the figure below (Figure 3.5). During runtime, the

monitor scans the server and displays the tag values and other statistics such as date, time, and quality.

Monitoring is enabled for each item with a check mark next to it. To enable/disable monitoring for an

item, you can click on the box to the left of the item. A check mark inside the box means the item is

enabled for monitoring. If there is no check mark, then the item is disabled.

 Figure 3.5: Runtime Monitor View

IV. APPLICATION

A facility needs to store water in a tank. The water is drawn from the tank by another system and its flowrate is

measured, as needed, the system must manage the water level in the tank & note the flowrate.

Using only digital signals, the PLC has two digital inputs from float switches (Low High Level). When the

water level is above the switch it closes a contact and passes a signal to an input. The PLC uses a digital output

to open and close the inlet valve into the tank.

When the water level drops enough so that the Low Level float switch is off (down), the PLC will open the

valve to let more water in. Once the water level raises enough so that the High Level switch is on (up), the PLC

will shut the inlet to stop the water from overflowing.

PLC logic goes as shown in Figure 4.1

Figure 4.1 Ladder logic

430 | P a g e

After knowing the control hierarchy and finding total number of I/O’s, logic is prepared in PLC using ladder

editor. After logic is checked by downloading it in PLC the next we have to define its access type as Read(R),

write (W) or Read/write(R/W).Tags with access as read type read the value of tags i.e. 0 or 1 and displayed it,

with access as write changes the value of the tag as 0 or 1. The tag with R/W does both the function. For the said

process program(representation) is developed in SCADA or VB. The value of the tag is fetched from OPC

server and displayed its status on the screen.

V. CONCLUSION

OPC combines different devices from different manufacturers in one system also it reduce installation

time, can add devices without stopping existing software and systems .Quickly replace a device from

one vendor with one from another. Share information around networks. Factory, laboratory and office

applications can all access the same data. Reliable data as any number of OPC software applications

can simultaneously read a device .Single, industry-standard, data interface. Also it is a alternative cost

effective solution to PLC & SCADA system.

REFERENCES

[1]. Swati P. Madhe and Mohini R. Kirane,”Customized SCADA using OPC”,Journal of the Instrument

Society of India,Vol.39 No.3,pp199-201.

[2]. Webb J. Reis. A., 2003,”Programmable Logic Controller”, Prentice-Hall of India Private Limited.

[3]. Kant K., 2002,”Computer Based Industrial Control” , Prentice- Hall of India Private Limited.

[4]. IDC Technologies, “Practical Fieldbus, Devicenet & Ethernet For Industry”

