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ABSTRACT  
To achieve full autonomy in mobile robot, it is essential to sense the environment accurately. Sensor plays a 

fundamental role in the autonomy process of mobile robot. Ultrasonic range finder is most widely used sensor 

for this purpose however it produces uncertainty. To reduce uncertainty generated from ultrasonic range finder 

an appropriate representation of sensory information is required. Occupancy grid modeling is a geometric 

representation for modeling the sensor reading produced by ultrasonic range finder. Here we use Elfes-

Moravec model to represent sensory information.    

 

Index Terms: Occupancy Grid, Ultrasonic Range Finder, Mobile Robot. 

 

I. INTRODUCTION 

 

In order to achieve full autonomy for a mobile robot, it is essential to sense the environment accurately. Sensor 

plays a fundamental role in the autonomy process of mobile robot. Various types of sensor such as ultrasonic 

range finder, infrared sensor, laser sensor, vision sensor etc are used for environment mapping [1-8]. 

Each of the above mentioned sensors has its own drawbacks. The Ultrasonic range finder for instance suffer 

from wide beam cone, specular reflection, crosstalk etc [4,8]. On the other hand lasers available in market are 

expensive and transparent to some material. Stereo vision systems are very sensitive to changes in illumination 

and the algorithms that exist are computationally expensive [8,11]. This generates uncertainty. 

To reduce uncertainty generated from Ultrasonic range finder an appropriate representation of sensory 

information is required. Occupancy grid modeling is a geometric representation for modeling the sensor reading 

produced by ultrasonic range finder. Here we use Elfes Moravec model to represent sensory information.  

 

II. ULTRASONIC RANGE FINDER 

 

Sonar refers to any system for using sound to measure range. Sonar stands for Sound Navigation and Ranging. 

Sonar for different applications operate at different frequencies; for example, sonar for underwater vehicles 

would use a frequency appropriate for traveling through water, while a ground vehicle would use a frequency 

more suited for air. Ground vehicles commonly use sonar with an ultrasonic frequency just at the edge of 

human hearing. As a result the terms "sonar" and "ultrasonic" are used interchangeably when discussing 

extracting range from acoustic energy. 
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Fig. 1 Ultrasonic Range Finder    

III. SENSOR MODEL 

 

Elfes and Moravec [1], the researcher models the sonar beam as two probability density function, and . 

These function measure the confidence and uncertainty of an empty and occupied region in the cone beam of the 

sonar respectively. In this model the following is defined: 

  Range measurement. 

  Probability of a particular cell being occupied. 

  Probability of a particular cell being empty. 

 Minimum distance. 

 Mean sonar deviation error. 

  Width of the cone. 

  sonar sensor 

  Distance between  to . 

  Angle between the main axis of sonar beam to the line .  

 

Fig.2 Field of View of the Sonar Sensor 

The beam is divided in two regions: 

a. The free space area or empty probability region which is the part of the beam between the sensor and the 

range where the obstacle was detected. This includes cell inside the sonar beam. Each cell has an empty 

probability : 

                                                            (1)  
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 is the estimation of the free space cell based on the range measurement from the sonar. The closer it is to 

the sensor the more likely it is to have a high estimation that the cell is empty. 

                                                     (2) 

 

 

            

  is the estimation that the cell is free based on the angle of the cone beam. The closer it is to the main axis 

and to the sonar the more estimate that it is empty. 

 

                             (3) 

  

b. The occupied area or probability occupied region. This is the area where the obstacle was detected. In this 

region the uncertainty to the exact distance to the obstacle  has to be taken into account. The probability 

of a cell being inside the occupied region is :- 

                                                      (4) 

  is the estimation is based on the range reading . The closer the obstacle is to the sonar the higher the 

probability that the cell is occupied 

           (5) 

                                

 is the estimation is based on the difference of the angle between the obstacle and the beam axis. The 

closer the obstacle is to the sonar the higher the probability that the cell is occupied. 

                             (6)                

 

IV. SENSOR MODEL RESULT 

 

The sensor reading is modeled using occupancy grid as shown in figure 3. Here it is clear that occupied area is 

represented as hill, empty area as valley and unknown area as plane surface. 

Unknown area is that area which is not covered by sensor. Occupied area is that area, where object may be 

present. Empty area is that area where robot can move easily. Refer to figure 4, in gray scale representation; it is 

clearer that object is present in white cells.   
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Fig.3 3D View of Occupancy Grid Modeling for Ultrasonic Range Finder 

0

10

20

30

40

50

05101520253035404550

 

 -1

-0.5

0

0.5

1

 

Fig.4. Gray Scale Representation of Occupancy Grid Modeling for Ultrasonic Range Finder 

 

V. CONCLUSION 

 

From result of sensor modeling, it is clear that only sensor reading is not sufficient to identify the object. Hence 

appropriate sensor modeling is highly needed. As we can see in gray scale representations that object may be 

present in one cell but due to wide beam cone of ultrasonic sensor, it is represented in more cells. This problem 

can be minimized by fusing ultrasonic sensory information with laser sensor information. 
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