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ABSTRACT 

Smart and connected healthcare is among important the range of applications enabled by the Internet of Things 

(IoT). It allows us to gather the information about physical and mental health from network sensors either 

embedded in our body or worn peripherally. This data is continuously captured and analyzed, such information 

can bring about a positivetransformative change in the health care landscape. In particular, the availability of 

data at until unimagined scales and temporal longitudes coupled with a new generation of intelligent processing 

algorithms can: (a) facilitate an evolution in the practice of medicine, from the current post facto diagnose-and 

treat reactive paradigm, to a proactive framework for prognosisof diseases at an incipient stage, coupled with 

prevention, cure,and overall management of health instead of disease, (b) enablepersonalization of treatment 

and management options targetedparticularly to the specific circumstances and needs of theindividual, and (c) 

help reduce the cost of health care whilesimultaneously improving outcomes. In this paper, we highlightthe 

opportunities and challenges for IoT in realizing this visionof the future of health care. 
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I. INTRODUCTION 

Recent years have seen a rising interest in wearable sensors and today several devices are commercially 

available [1]–[3] for personal health care, fitness, and activity awareness. In addition to the niche recreational 

fitness arena catered to by current devices, researchers have also considered applications of such technologies in 

clinical applications in remote health monitoring systems for long term recording, management and clinical 

access to patient’s physiological information [4]–[8]. 

Based on current technological trends, one can readily imaginea time in the near future when your routine 

physical examination is preceded by a two–three day period of continuous physiological monitoring using 

inexpensive wearable sensors. Over this interval, the sensors would continuously record signals correlated with 

your key physiological parameters and relay the resulting data to a database linked with your health records. 

When you show up for your physical examination, the doctor has available not only conventional clinic/lab-test 

based static measurements of your physiological and metabolic state, but also the much richer longitudinal 

record provided by the sensors. Using the available data, and aided by decision support systems that also have 
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access to a large corpus of observation data for other individuals, the doctor can make a much better prognosis 

for your health and recommend treatment, early intervention, and life-style choices that are particularly effective 

in improving the quality of your health. Such a disruptive technology could have a transformative impact on 

global healthcare systems and drastically reduce healthcare costs and improve speed and accuracy for diagnoses. 

Technologically, the vision presented in the preceding paragraph has been feasible for a few years now. Yet, 

wearable sensors have, thus far, had little influence on the current clinical practice of medicine. In this paper, we 

focus particularly on the clinical arena and examine the opportunities afforded by available and upcoming 

technologies and the challenges that must be addressed in order to allow integration of these into the practice of 

medicine. The paper is organized as follows: Section II highlight some of the key related work in this area. In 

Section III, we outline the architecture for remote health monitoring systems based on wearable sensors, 

partitioning the system into for main components acquisition, analytics, and visualization. In Sections IV– VII 

we highlight the opportunities and challenges related to each of these components. We conclude the paper in 

Section VIII with a summary and discussion. 

 

II. BACKGROUND 

Most proposed frameworks for remote health monitoring leverage a three tier architecture: a Wireless Body 

Area 

Network (WBAN) consisting of wearable sensors as the data acquisition unit, communication and networking 

and the service layer [4], [7]–[10]. For instance [11] proposes a system that recruits wearable sensors to measure 

various physiological parameters such as blood pressure and body temperature Sensors transmit the gathered 

information to a gateway server through a Bluetooth connection. The gateway server turns the data into an 

Observation and Measurement file and stores it on a remote server for later retrieval by clinicians through the 

Internet. Utilizing a similar cloud based medical data storage, a health monitoring system is presented in [12] in 

which medical staff can access the stored data online through content service application. Targeting a specific 

medical application, WANDA [13] an end to end remote health monitoring and analytics system is presented for 

supervision of patients with high risk of heart failure. In addition to the technology for data gathering, storage 

and access, medical data analysis and visualization are critical components of remote health monitoring systems. 

Accurate diagnoses and monitoring of patient’s medical condition relies on analysis of medical records 

containing various physiological characteristics over a long period of time. Dealing with data of high 

dimensionality in both time and quantity makes data analysis task quite frustrating and error prone for clinicians. 

Although the use of data mining and visualization techniques had previously been addressed as a solution to the 

aforementioned challenge [14], [15], these methods have only recently gained attention in remote health 

monitoring systems [16], [17]. A device utilizing the IoT scheme is uniquely addressed and identifiable at 

anytime and anywhere through the Internet. IoT based devices in remote health monitoring systems are not only 

capable of the conventional sensing tasks but can also exchange information with each other, automatically 

connect to and exchange information with health institutes through the Internet, significantly simplifying set up 

and administration tasks. As exemplified in [19], such systems are able to provide services such as automatic 

alarm to the nearest healthcare institute in the event of a critical accident for a supervised patient. 
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III. SYSTEM ARCHITECTURE 

Figure 1 illustrates the system architecture for a remote health monitoring system, whose major components we 

describe next: Data Acquisition is performed by multiple wearable sensors that measure physiological 

biomarkers, such as ECG, skin temperature, respiratory rate, EMG muscle activity, and gait (posture). The 

sensors connect to the network though an intermediate data aggregator or concentrator, which is typically a 

smart phone located in the vicinity of the patient. The Data Transmission components of the system are 

responsible for conveying recordings of the patient from the patient’s house (or any remote location) to the data 

center of the Healthcare Organization (HCO) with assured security and privacy, ideally in near real-time. 

Typically, the sensory acquisition platform is equipped with a short range radio such as Zigbee or low-power 

Bluetooth, which it uses to transfer  sensor data to the concentrator. Aggregated data is further relayed to a HCO 

for long term storage using Internet connectivity on the concentrator, typically via a smart phone’s  WiFi or 

cellular data connection. Sensors in the data acquisition part form an Internet of Things (IoT) based architecture 

as each individual sensor’s data can be accessed through the Internet via the concentrator [20], [21].  

 

“Fig. 1. Components of a remote patient monitoring system that is based on 

an IoT-Cloud architecture” 

Often a storage/processing device in vicinity of a mobile client, sometimes referred to as a cloudlet, is used to 

augment its storage/processing capability whenever the local mobile resources do not fulfill the application’s 

requirements [22]. The cloudlet can be a local processing unit (such as a desktop computer) which is directly 

accessible by the concentrator through WiFi network. In addition to providing temporary storage prior to 

communication of data to the cloud, the cloudlet can also be used for running time critical tasks on the patient’s 

aggregated data. Moreover, the cloudlet can be used to transmit the aggregated data to the cloud in case of 

limitations on the mobile device such as temporary lack of connectivity or energy. Cloud Processing has three 
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distinct components: storage, analytics, and visualization. The system is designed for long term storage of 

patient’s biomedical information as well assisting health professionals with diagnostic information. Cloud based 

medical data storage and the upfront challenges have been extensively addressed in the literature [23], [24]. 

Analytics that use the sensor data along with e-Health records that are becoming prevalent can help with 

diagnoses and prognoses for a number of health conditions and diseases. Additionally. Visualization is a key 

requirement for any such system because it is impractical to ask physicians to pore over the voluminous data or 

analyses from wearable sensors. Visualization methods that make the data and analyses accessible to them in a 

readily digestible format are essential if the wearable sensors are to impact clinical practice. In the following 

sections, we consider the key elements of the overall system illustrated in Fig. 1 and highlight the opportunities 

and challenges for each in integrating remote health monitoring into clinical practice.  

Table 1. List of Available (Top) and Future (Bottom) Sensors and Their Applicability to Detecting Health 

Conditions Related To Three Common Disease Categories: Cardiovascular Diseases (Cvd), Chronic Obstructive 

Pulmonary Disease  (Copd) [26], And Parkinson’s/Huntington’s Diseases (Pd) [27], [28]. YY Indicates High 

Applicability, Y  Indicates Some Applicability, and  ? Indicates Undetermined Applicability 

Bio marker CVD COPD PD/HD Diabetes 

Gait (Posture) Y Y Y Y Y Y ? 

ECG Y Y Y Y Y Y 

Respiratory rate Y Y Y Y Y ? 

Skin Temperature Y Y Y Y 

Surface EMG Y Y Y ? 

Sweating ? ? Y ? 

Blood Pressure YY                     Y Y Y 

Body Movement Y ? YY ? 

Blood Glucose ? ? ? YY 

Heart Sound  Y Y ? ? 

Oxygen YY YY ? ? 

Title volume YY YY Y ? 

 

IV. DATA ACQUISITION AND SENSING 

Physiological data is acquired by wearable devices that combine miniature sensors capable of measuring various 

physiological parameters, minor preprocessing hardware and a communications platform for transmitting the 

measured data. Table I summarizes various biomarkers that can be measured by current or soon-to-be-available 

wearable sensors. The level of applicability of these biomarkers to diagnosing four common disease categories 

is also indicated in the table. The wear ability requirement, poses physical limitations on the design of the 

sensors. The sensors must be light, small, and should not hinder a patient’s movements and mobility. Also, 

because they need to operate on small batteries included in the wearable package, they need to be energy 

efficient. Though the battery may be rechargeable or replaceable, for convenience and to ensure that data is not 

lost during recharging or battery replacement periods, it is highly desirable that they provide extended durations 

of continuous operation without requiring charging or replacement.  

The low energy operation requirement can also pose a challenge for the quality of the data captured in terms of 

the achievable signal to noise ratio. Recent designs [5], [29],[30] of flexible sensors that can be placed in contact 

with the skin in different body parts are particularly attractive for medical applications because, compared to 
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alternatives, the close contact with the skin allows measurement of more physiological parameters and with 

greater accuracy. There have also been efforts to prolong the operational lifetime of wearable sensors by 

incorporating low power device and circuit level techniques and energy harvesting methods. Moreover, utilizing 

intelligent sensing methods on system level can further increase the operational longevity. Energy efficient 

sensing mechanisms have been studied in the related context of wireless sensor networks (WSNs) that are used 

to sense physical phenomenon in a distributed fashion. Although the sensor deployment in our health 

monitoring system is more concentrated compared to WSNs, existing methods for WSNs can be revisited to suit 

our needs. The proposed energy efficient sensing approaches revolve around assigning sensing tasks to the 

nodes based on their relative distance so as to sense the maximum amount of physical information while 

minimizing the energy consumption by removing possible redundant sensing tasks and by allocation of tasks 

based on the energy availability at each sensor. Similar mechanisms can be applied to our system by defining 

and using a dynamic context that is based on energy availability and the health condition of the patient. For 

example, as indicated in Table I, individually sensed biomarkers have different levels of applicability for 

specific health conditions. When energy is severely limited and the vulnerable condition of the patient mandates 

focus on a specific biomarker, the other sensors be powered off in order to extend the lifetime. An IoT based 

sensing architecture facilitates the implementation of such schemes for improving energy efficiency adaptively 

by allowing dynamic utilization of sensors based on the context. In conventional data acquisition systems where 

sensors passively transmit the gathered information, such intelligence and flexibility may not be achievable. 

Also by offloading the decision making process for sensing task assignment to the cloud, more sophisticated 

algorithms can be applied without requiring manual intervention by the patient to manipulate the sensors or the 

software on the dataconcentrator. Energy limitation of these devices necessitates the use of suitable low power 

communication protocols,as the communication can account a significant part of the power consumption in 

sensing devices. ZigBee over IEEE 802.15.4 is commonly used in low rate WPANs (LR-WPANs) to support 

communication between low power devices that operate in personal operating space (POS) of approximately 

10m. ZigBee provides reliable mesh networking with extended battery life. Bluetooth low energy (BLE) is 

another wireless communication protocol suitable for low power short range communication suitable for the 

unique requirements of applications such as health monitoring, sports, and home entertainment. The original 

Bluetooth protocol (IEEE 802.15.1) was designed to support relatively short range communication for 

applications of a streaming nature, such as audio. BLE modifies the framework by utilizing much longer sleep 

intervals to decrease the overall energy consumption. BLE achieves higher energy efficiency in terms of number 

of bytes sent per Joule of energy. When using the aforementioned communication protocols, an intermediate 

node (data concentrator) is necessary to make sensors data and control accessible through Internet. To further 

realize the IoT concept, IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) has been 

proposed to seamlessly connect energy constrained WPAN devices to the Internet [19]. 6LoWPAN defines 

fragmentation techniques to fit IPv6 datagram into IEEE 802.15.4 limited frame size to provide IP access to low 

power, low complexity sensing devices 
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V. CLOUD DATA STORAGE AND PROCESSING 

 In this section, we outline such could architectures and discuss issues that impact long term medical data 

storage on the cloud.  

a) Hybrid Cloud/Cloudlet Architecture: Cloudlet is a limited resource computing and storage platform that 

eliminates the need to outsource resource intensive tasks to the enterprise cloud. Cloudlet computing has been 

introduced as a potential solution to deliver low latency to time critical tasks for health monitoring applications 

via body area networks. Communication between concentrator and cloudlet is realized through WiFi interface. 

Direct connection between these two entities reduces data transfer latency for time critical tasks on aggregated 

data. LTE access provided in concentrator can in turn be used for direct data transfer from the concentrator to 

the cloud bypassing the cloudlet, while exposing the data to the latency imposed by mobile network.     

b) Context-Aware Concentration via Smart Devices: As previously indicated, smart phones can at as 

concentrators in IoT infrastructure as today’s smart phones can use both LTE and WiFi as the backhaul network. 

Data aggregation can be carried on either in cloudlet (thorough the WiFi connection between concentrator and 

the cloudlet) or the cloud (LTE). In studies, the former compared with the latter, has been shown to provide ten 

times the throughput and to require only a tenth of the access time, and half the power. Aggregated data, 

however, needs to be finally be stored in the cloud to allow distributed access and reliable storage. To 

effectively partition 

data aggregation tasks between cloud and cloudlet, context aware concentration may be utilized. Context can 

account for the current and expected status of the patient. For example, when the patient is in a critical condition 

requiring time critical monitoring of biosensor data, data concentration may be the preferred choice. 

c) Privacy of the Data Concentrator: Although personally identifiable information can be removed before 

transmitting sensed data information, the system is still prone to aggregate disclosure attacks that can infer 

information via pattern recognition approaches. Context aware data concentration, while offering some benefits, 

may also make sensed information vulnerable to aggregate disclosure attacks by allowing intruder to infer a 

patient’s health information through network traffic analysis from concentrator to mobile back haul. Standard 

encryption techniques can be employed to ensure security in such settings. 

d) Secure Data Storage in the Cloud: Privacy is of tremendous importance when storing individual’s electronic 

medical records on the cloud. According to the terms defined by Health Insurance Portability and 

Accountability Act (HIPAA), the confidential part of medical records has to be protected from disclosure. When 

the medical records are outsourced to the cloud for storage, appropriate privacy preserving measures need to be 

taken to prevent unauthorized parties from accessing the information. Secure cloud storage frameworks have 

therefore been proposed for use with sensitive medical records. Secure medical data processing on the cloud 

remains a challenge. 

 

VI. ANALYTICS 

Compared with the lab and office based measurements that are the workhorses of current clinical medical 

practice, 

wearable sensors can readily incorporate multiple physiological measurements and enable gathering of data with 

much finer temporal sampling over much longer longitudinal time scales. These rich data sets represent a 
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tremendous opportunity for data analytics: machine learning algorithms can potentially recognize correlations 

between sensor observations and clinical diagnoses, and by using these datasets over longer durations of time 

and by pooling across a large user base, improve medical diagnostics. As in other big data applications, the use 

of analytics here can improve accuracy, allow earlier detection, enable personalization, and reduce cost by 

reducing expensive lab procedures that are unnecessary. Analytics on wearable sensor data can conceptually 

utilize a wide-range of pattern recognition and machine learning techniques that have matured significantly and 

are now commonly available as toolboxes in several software packages. Several challenges must, however, be 

overcome before analytics can be deployed on any meaningful scale.  

 

“Fig. 2. Analytics workflow for systems integrating wearable sensor technology into clinical 

practice” 

 

VII. VISUALIZATION 

To highlight the utility of effective visualization of temporal information, we present a concrete example for 

cadio-vascular disease (CVD) monitoring. Holter monitor based ECG recording over durations of 24-48 hours is 

already utilized in CVD diagnosis. Among other things, such monitoring is useful for detecting abnormal 

elongation of the QT interval, which represents the duration of time taken for electrical depolarization and 

repolarization of the ventricles and measured on the ECG as the duration between the start of the Q-wave and 

the end of the T-wave. An abnormal prolongation of this interval, called Long QT Syndrome (LQTS) is an 

important indicator of potential malfunctioning of the heart. For diagnosis, a corrected value, QTc, which 

compensates for the natural variation in QT interval with the heart rate is more directly informative than the raw 

QT values. The QTc interval is usually around 400 ms in a healthy person, and may go up to 500 ms or even 

higher with LQTS. After a patient undergoes a holter based recording session, QTc values are commonly 

obtained from analyses of ECG data and available to the physician for the duration of the study (one value per 

heart beat). A cardiologist that has 20 patients may have access to a table containing yesterday’s two million 

QTc values, which can clearly not be individually examined as raw data. In current practice, cardiologists 

typically spot check about 10 seconds of the patient’s ECG, and review the computed average values over a full 

24-hour recording. This process discards a lot of key information. In the case of LQTS, for instance, QTc could 

be prolonged for several minutes or even hours without the doctor noticing the problem.  
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The two plots shown in Figure 3 show 24 hour Holter monitoring results plotted within a circle. Midnight is the 

top of the plot and noon is the bottom. Low QTc values are inside the circle, and high values are along the 

edges. Different color bands are the QTc thresholds for normal (green: 360–425 ms), borderline (yellow: 450–

500 ms), and abnormal (red: ≥500 ms). While the healthy patient’s QTc (top figure) always stays within the 

normal region, the unhealthy patient’s QTc (bottom figure) transitions into the abnormal region. These type of 

plots shown in Figure 3 allow for the physician to readily see and comprehend the the full temporal variation in 

QTc over the entire recording interval, instead of having to spot check individual values. Note also the 

significant change in QTc at night in Figure 3, which cannot be detected in clinical ECG monitoring done during 

the day. While this example focused on QTc and 24-hour observation periods, the process and framework will 

be similar to monitor other medical markers such as O2 saturation or glucose levels, and over different time 

intervals. The preceding example illustrated the visualization of one parameter over the temporal duration of the 

recording via an informative image, which we note was static as opposed to varying with time. One can also 

readily present a number of parameters in parallel via one such image for each parameter. While this can be 

efficient for the physician to see the variation in each individual parameter at a glance, it is not as intuitive for 

understanding how the displayed parameters may co-vary over time. To address, this, additional visualization 

methods are required for visualizing the temporal dimension. The interactivity available through touch 

interfaces in modern mobile devices such as smartphones and tablets offers a particularly attractive opportunity 

for visualization of temporal relations. 

 

“Fig. 3. QTc (in seconds) over 24 hours using the Bazett correction equationTop: healthy 24yo 

male patient. Bottom: 35yo male patient with theLQT2 genetic mutation, on beta blockers. 

“Slices” in the plots indicate a period that was not recorded. The green band is the interquartile 

range for healthy male patients in the THEW database. Red represents abnormaland 

potentially dangerous QTc values” 
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VIII. SUMMARY AND CONCLUDING REMARKS 

In this paper, we reviewed the current state and projected future directions for integration of remote health 

monitoring technologies into the clinical practice of medicine. Wearable sensors, particularly those equipped 

with IoT intelligence, offer attractive options for enabling observation and recording of data in home and work 

environments, over  much longer durations than are currently done at office and laboratory visits. This treasure 

trove of data, when analyzed and presented to physicians in easy-to-assimilate visualizations has the potential 

for radically improving healthcare and reducing costs. We highlighted several of the challenges in sensing, 

analytics, and visualization that need to be addressed before systems can be designed for seamless integration 

into clinical practice. 
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