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ABSTRACT 

 In this paper modeling of an inverted pendulum is done using fundamental law of motions (Newton’s 

second Law of motions) for stabilization of the pendulum. The controller gain is designed through 

Pole Placement design (A conventional controller) and Linear Quadratic Regulator (An optimal 

controller) techniques and also the results for both the controller are compared.  An advantage of 

Quadratic Control method over the pole-placement techniques is that the former provides a 

systematic way of computing the state feedback control gain matrix.LQR controller is designed by the 

selection on choosing .The proposed system extends classical inverted pendulum by incorporating two 

moving masses. The motion of two masses that slide along the horizontal plane is controllable .The 

results of computer simulation for the system with Linear Quadratic Regulator (LQR) & Pole 

Placement Design. 

Keywords:  Inverted Pendulum, Mathematical Modeling, Pole Placement Design, Linear Quadratic 

Regulator (LQR), State Feedback Matrix. 

 

I. INTRODUCTION 

In our childhood we were trying to balance a broom-stick on our index finger or the palm of our hand for fun. In 

that playing trick we had to constantly adjust the position of our hand to keep the object upright. An Inverted 

Pendulum does basically the same thing. But in case of an Inverted Pendulum the motion is restricted to one 

dimension only, where as in case of a broom-stick the hand is free to move in any directions. Just like the 

broom-stick, an Inverted Pendulum is an inherently unstable system. Force must be properly applied to keep the 

system intact. To achieve this, proper control theory is required. The Inverted Pendulum is a non-linear time 

variant open loop system. .So the standard linear techniques cannot model the non-linear dynamics of the 

system. This makes the system more challenging for analysis. The dynamics of the actual non-linear system is 

more complicated. But this non linearized system can be approximated as a linear system if the operating region 

is small, i.e. the variation of the angle from the normal position. Here we use two techniques, 1
st
 is pole 

placement design and 2
nd

 is Linear Quadratic Regulator 
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II. MATHEMATICAL MODELING OF THE SYSTEM 

Here we consider only a two-dimensional problem in which the pendulum moves only in the plane of the page. 

The control force F is applied to the cart. Assume that the center of gravity of the pendulum rod is at its 

geometric center. Below are the free-body diagrams of the two elements of the inverted pendulum system. 

 

 

 

 

 

 

 

Fig. 1 

 

Summing the forces in the free-body diagram of the cart in the horizontal direction, you get the following 

equation of motion. 

+ b + N = F           (1) 

Summing the forces in the free-body diagram of the pendulum in the horizontal direction, we get the following 

expression for the reaction force . 

         (2) 

If we substitute this equation into the first equation, we get one of the two governing equations for this system. 

       (3) 

To get the second equation of motion for this system, sum the forces perpendicular to the pendulum. Solving the 

system along this axis greatly simplifies the mathematics. we should get the following equation.  

       (4) 

To get rid of the P and N terms in the equation above, sum the moments about the centroid of the pendulum to 

get the following equation.  

          (5) 

Combining these last two expressions, we get the second governing equation.  

        (6) 

Since the analysis and control design techniques we will be employing in this example apply only to linear 

systems, this set of equations needs to be linearized. Specifically, we will linearize the equations about the 

vertically upward equilibrium position,  = , and will assume that the system stays within a small 

neighbourhood of this equilibrium. This assumption should be reasonably valid since under control we desire 

that the pendulum not deviate more than 20 degrees from the vertically upward position. Let  represent the 

deviation of the pendulum’s position from equilibrium, that is,  =  + . Again presuming a small deviation ( ) 

from equilibrium, we can use the following small angle approximations of the nonlinear functions in our system 

equations 



 

1821 | P a g e  

 

         (7) 

         (8) 

           (9) 

After substituting the above approximations into our nonlinear governing equations, we arrive at the two 

linearized equations of motion. Note u has been substituted for the input F. 

         (10) 

         (11) 

2.1 Transfer Function 

To obtain the transfer functions of the linearized system equations, we must first take the Laplace transform of 

the system equations assuming zero initial conditions. The resulting Laplace transforms are shown below. 

        (12) 

       (13) 

Recall that a transfer function represents the relationship between a single input and a single output at a time. To 

find our first transfer function for the output and an input of U(s) we need to eliminate X(s) from the above 

equations. Solve the first equation for X(s). 

          (14) 

Then substitute the above into the second equation.  

    (15) 

Rearranging, the transfer function is then the following 

         (16) 

Where,         (17) 

From the transfer function above it can be seen that there is both a pole and a zero at the origin. These can be 

canceled and the transfer function becomes the following. 

      (18) 

Second, the transfer function with the cart position X(s) as the output can be derived in a similar manner to 

arrive at the following. 

      (19) 

2.2 State Space Model 

The linearized equations of motion from above can also be represented in state-space form if they are rearranged 

into a series of first order differential equations. Since the equations are linear, they can then be put into the 

standard matrix form shown below.   
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     (20) 

         (21) 

The  matrix has 2 rows because both the cart's position and the pendulum's position are part of the output. 

Specifically, the cart's position is the first element of the output y and the pendulum's deviation from its 

equilibrium position is the second element of y. 

 

III. DESIGN REQUIREMENT 

Our problem is to have a closed loop system having an overshoot of 10% and settling time of 1 sec. Since the 

overshoot 

Table 1. Parameters under considerations 

Parameter  Value Unit  

Cart mass(𝑀)  1 Kilogram 

Mass of the pendulum(𝑚)  0.2 Kilogram 

Half Length of pendulum(𝑙)  0.45 meter 

Coefficient of frictional force(𝑏)  

 

0.1 Ns/m 

Moment of inertia of pendulum(𝐼)  0.0135 Kg/m
2 

Gravitation force(𝑔)  9.8 m/s
2 

 

IV. OPEN-LOOP STABILITY 

In this problem, represents the step command of the cart's position. The 4 states represent the position and 

velocity of the cart and the angle and angular velocity of the pendulum. The output contains both the position of 

the cart and the angle of the pendulum. We want to design a controller so that when a step reference is given to 

the system, the pendulum should be displaced, but eventually return to zero (i.e. vertical) and the cart should 

move to its new commanded position. As we all know Inverted Pendulum is inherently unstable system. The 

pole locations are 0, -0.0833, -4.3266, 4.3147. 

     We can see one of pole in right half (pole 4.3147). So system is unstable. 

 

V. POLE PLACEMENT 

 Assumptions 

 The system is completely state controllable 

 The state variables are measurable and are available for feedback. 

 Control input is unconstrained. 
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 Objective 

The closed loop poles should lies at desired locations which are as per design requirement.  Let us assume that 

we decide that the desired closed-loop poles are to be at s=μ1, s=μ2…s= μn. By choosing an appropriate gain 

matrix for state feedback, it is possible to force the system to have closed-loop poles at the desired locations, 

provided that the original system is complete state controllable. Consider a control system 

 

       

A = n × n constant matrix 

B = n × 1 constant matrix 

C = 1 × n constant matrix 

D = constant (scalar) 

u = control signal (scalar) 

y = output signal (scalar) 

x = state vector (n-vector) 

Where we shall choose the control signal to be 

u = – Kx 

This means that the control signal is determined by an instantaneous state. Such a scheme is called state 

feedback. The 1× n matrix K is called the state feedback gain matrix. We assume that all state variables are 

available for feedback. In the following analysis we assume that is unconstrained. A block diagram for this 

system is shown. 

 

Fig.2 State space design 

This closed-loop system has no input. Its objective is to maintain the zero output. Because of the disturbances 

that may be present, the output will deviate from zero. The nonzero output will be returned to the zero reference 

input because of the state feedback scheme of the system. Such a system where the reference input is always 

zero is called a regulator system. (Note that if the reference input to the system is always a nonzero constant, the 

system is also called a regulator system.)The solution of this equation is given by 

 

Where  is the initial state caused by external disturbances. The stability and transient response 

characteristics are determined by the Eigen values of matrix [A-BK]. 
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If matrix x(t) =(A-BK)x(t) 

K is chosen properly, the matrix [A-BK] can be made an asymptotically stable matrix, And for all x(0)≠0, it is 

possible to make x(t)approach 0 as t approaches infinity. The eigen values of matrix [A-BK] are called the 

regulator poles. If these regulator poles are placed in the left-half s plane, then x(t) approaches to infinity. The 

problem of placing the regulator poles (closed-loop poles) at the desired location is called a Pole-placement 

problem. 

Determination of Matrix K Using Ackermann’s Formula: 

There is a well-known formula, known as Ackermann’s formula, for the determination of the state feedback 

gain matrix K. We shall present this formula in what follows. 

Consider the system 

 

Where we use the state feedback control u = –Kx. We assume that the system is completely state controllable. 

We also assume that the desired closed-loop poles are at s = μ1, s=μ2…S= μn 

Use of the state feedback control 

u=−Kx modifies the system equation to 

 

 

The desired characteristic equation is 

  

From Cayley –Hamilton theorem we get the value of gain matrix. 

 

Fig.3 Inverted-pendulum control system. 

 

Analytical Calculations of Inverted Pendulum by using Pole Placement design. 

As per design requirement maximum overshoot 10 % and settling time 1sec. Our pole is calculated 

below 
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Solving above equation we get value of  . 

Settling time =  

Solving above equation we get value of .  

From the above value we get value of poles 

 -4+ 5.459j, -4-5.459j, -10, -20 

 

VI. LINEAR QUADRATIC REGULATOR 

Deriving the state X of a linear system.  

 

To the origin by minimizing the following quadratic performance Index (cost function) 

 

 

Necessary condition of Optimality 

 Terminal Penalty  

 Hamiltonian  

 State Equation    

 Costate Equation  

 Optimal Control Equation    

 Boundary Condition  

Riccati Equation 

 

Solution Procedure 

 Use the boundary condition  and integrate the Riccati Equation backwards from  . 

 Store the solution history for Riccati matrix. 

 Compute the optimal control online 

 

Infinite Time Regulator Problem 

Theorem(By Kalman) 

As  for constant Q and R matrices,  

Algebraic Riccati Equation(ARE) 
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As here we can see that on changing the weight cost matrix Q and R. Settling time also changes. Decreasing the 

value Q causing system instability, so proper choice of Q and R is needed. 

Q= [1 0 0 0; 0 0 0 0;0 0 1 0;0 0 0 0], R= [.001] 

We get the optimum result. 

 

VII. SIMULATION & RESULTS 

By using MATLAB we got the outputs 

Simulation result using pole placement design: 

 

Fig.4 Response of Inverted Pendulum using Pole Placement Design 

Simulation result using LQR: 

Q = [1 0 0 0; 0 0 0 0; 0 0 1 0; 0 0 0 0] 

R = [0.001] 

 

Fig. 5.  Response of Inverted Pendulum using LQR 
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VIII. CONCLUSION 

Modeling of inverted pendulum shows that system is unstable. Results of applying state feedback controllers 

show that the system can be stabilized. LQR controller method is cumbersome because of selection of constants 

of controller. Constant of the controllers can be tuned by some soft computing techniques for better result.  

Comparing the step response characteristics of this system with those of pole placement we have observed that 

the response of present system is less oscillatory and exhibits less maximum overshoot .The system designed by 

quadratic optimal regulator approach is- less oscillatory and well damped 
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