

129 | P a g e

IMPROVISED WIRELESS SENSORY NODES BASED

ON LOW POWER DSP ARCHITECTURE

Swetha Tarigoppula
1
, Chiruvella Suresh

2

1,2
Assistant Professor , Department of ECE,

Dhruva Institute of Engineering and Technology, Hyderabad, (India)

ABSTRACT

In 21
st
 the role of wireless communications is huge in daily life applications but still power consumption by the

applications is still concerned area infield of digital signal processing. Low power DSP architecture is required

in all applications. Wireless communication exhibits the highest energy consumption in wireless sensor nodes.

Given their limited energy supply from batteries or scavenging, these nodes must trade data communication for

on-the-node computation. Due to the increasing complexity of VLSI circuits and their frequent use in portable

applications, energy losses in the interconnections of such circuits have become significant. In the light of this,

an efficient routing of these interconnections becomes important. In the implemented design describes the

design and implementation of the newly proposed folded-tree architecture for on-the-node data processing in

wireless sensor networks, in addition of add the routing technique for the high communication. Measurements of

the silicon implementation show an improvement of 10–20× in terms of energy as compared to traditional

modern micro-controllers found in sensor nodes.

Keywords :Digital processor, Folded Tree, Modern Micro-Controller, parallel prefix, wireless sensor Network

(WSN).

I. INTRODUCTION

Wireless Sensor Network (WSN) applications range from medical monitoring to environmental sensing,

industrial inspection, and military surveillance. WSN nodes essentially consist of sensors, a radio, and a

microcontroller combined with a limited power supply, e.g., battery or energy scavenging. Since radio

transmissions are very expensive in terms of energy, they must be kept to a minimum in order toextend node

lifetime. The ratio of communication-to computation energy cost can range from 100 to 3000. In addition, the

lack of task-specific operations leads to inefficient execution. The data-driven nature of WSN applications

requires a specific data processing approach. Previously, we have shown how parallel prefix computations can

be a common denominator of many WSN data processing algorithms.

It is possible to say that history of sensor network technology originates in the first distributed sensing idea

implementations. The continuous work of researchers and engineers over sensor networks which lately became

wireless sensor networks (WSNs) has started exactly with this idea. Like many other technologies, distributed

sensing was firstly introduced by the military. The first system which has all the characteristics of sensor

networks (distribution, hierarchical data processing system) is Sound Surveillance System (SOSUS), which was

made to detect and track submarines. SOSUS consisted of the acoustic sensors (hydrophones) settled on the

130 | P a g e

ocean bottom. In 1980s Defense Advanced Research Projects Agency (DARPA) is working over Distributed

Sensor Networks (DSN) program.

The main task of the program was to test applicability of a new approach to machine communications,

introduced for the first time in Arpanet (predecessor of the Internet). The task of researchers was to engineer a

network of area-distributed sensors. At the same time, sensors had to be inexpensive, work autonomously and

exchange data independently. Such demands are still made for developing sensor networks for modern

applications. Hence, it is possible to say that the DARPA research was a base for modern WSNs. A sensor

network of acoustic sensors tracking aircrafts appeared as a result of collaboration of researchers from Carnegie

Mellon University (CMU), Pittsburgh, PA, and Massachusetts Institute of Technology (MIT), Cambridge. For a

demonstration there was a platform made to passively detect and track low-flying aircraft. Connection between

mobile nodes and a central computer was implemented through wireless transmission channel. Certainly, this

system included not so many wireless nodes, and it was necessary to transport mobile nodes in the lorries, also

system was able to track only low-flying objects with simple trajectory in rather short distance. However, this

work was well in advance of that time and gave a considerable impetus to sensor networks developing.

The goal of this paper is to design an ultralow-energy WSN digital signal processor by further exploiting this

and other characteristics unique to WSNs.

II. CHARACTERISTICS OF WSN

Several specific characteristics, unique to WSNs, need to be considered when designing a data processor

architecture for WSNs.

2.1 Data-Driven

WSN applications are all about sensing data in an environment and translating this into useful information for

the end-user, so virtually all WSN applications are characterized by local processing of the sensed data.

2.2 Many-to-Few

Since radio transmissions are very expensive in terms of energy, they must be kept to a minimum in order to

extend node lifetime. Data communication must be traded for on-the-node computation to save energy, so many

sensor readings can be reduced to a few useful data values.

2.3 Applications-Specific

 A “one-size-fits-all” solution does not exist since a general purpose processor is far too power hungry for the

sensor node’s limited energy budget. ASICs, on the other hand, are more energy efficient but lack the flexibility

to facilitate many different applications. Apart from the above characteristics of WSNs, two key requirements

for improving existing processing and control architectures can be identified.

2.4 Minimize Memory Access

 Modern micro-controllers (MCU) are based on the principles of a divide-and-conquer strategy of ultra-fast

processors on the one hand and arbitrary complex programs on the other hand. But due to this generic approach,

algorithms are deemed to spend up to 40–60% of the time in accessing memory, making it a bottleneck.

2.5 Data Flow and Control Flow Principles

 To manage the data stream (to/from data memory) and the instruction stream (from program memory) in the

core functional unit, two approaches exist. Under control flow, the data stream is a consequence of the

131 | P a g e

instruction stream, while under data flow the instruction stream is a consequence of the data stream. Traditional

processor architecture is a control flow machine, with programs that execute sequentially as a stream of

instructions. In contrast, a data flow program identifies the data dependencies, which enable the processor to

more or less choose the order of execution. The latter approach has been hugely successful in specialized

highthroughput applications, such as multimedia and graphics processing.

Figure 1: A binary tree (left, 7 PEs) is functionally equivalent to the novel folded tree topology

(right, 4 PEs) used in this architecture

Figure 2: Addition with propagate-generate (PG) logic

III. PROPOSED METHOD

3.1 On-The-Node Data Aggregation

Notwithstanding the seemingly vast nature of WSN applications, a set of basic building blocks for on-the-node

processing can be identified. Common on-the-node operations performed on input data collected directly from

the node’s sensors or through in-the-network aggregation include filtering, fitting, sorting ,and

searching[7].Prefix operations can be calculated in a number of ways, but we chose the binary tree approach

because its flow matches the desired on-the-node data aggregation. This can be visualized as a binary tree of

processing elements (PEs) across which input data flows from the leaves to the root (Fig. 1, left). This topology

will form the fixed part of our approach, but in order to serve multiple applications, flexibility is also required.

The tree-based data flow will, therefore, be executed on a data path of programmable PEs, which provides this

flexibility together with the parallel prefix concept.

3.2 Parallel Prefix Operations

In the digital design world, prefix operations are best known for their application in the class of carry look-ahead

adders. The addition of two inputs A and B in this case consists of three stages (Fig. 2): a bitwise propagate

132 | P a g e

generate (PG) logic stage, a group PG logic stage, and a sum-stage. The outputs of the bitwise PG stage (Pi = Ai

+ Bi and Gi = Ai ・ Bi) are fed as (Pi, Gi)-pairs to the group PG logic stage, which implements the following

expression:

(Pi, Gi) ◦ (Pi+1, Gi+1) = (Pi ・Pi+1, Gi + Pi ・Gi+1) (1)

Figure 3: Example of a prefix calculation with sum operator using Blelloch’s generic approach

For example, the binary numbers A = “1001” and B= “0101” are added together. The bitwise PG logic of

LSBfirst noted A = {1001} and B = {1010} returns the PG-pairs for these values, namely, (P, G) = {(0, 1); (0,

0); (1,0); (1, 0)}.Using these pairs as input for the group PG-network, defined by the ◦-operator from (1) to

calculate the prefix operation, results in the carry-array G = {1, 0, 0, 0} [i.e., the second element of each

resulting pair from (1)]

In fact, it contains all the carries of the addition, hence the name carry look ahead. Combined with the

corresponding propagate values Pi, this yields the sum S = {0111}, which corresponds to “1110.”

The group PG logic is an example of a parallel prefix computation with the given ◦-operator. The output of this

parallel prefix PG-network is called the all-prefix set defined next.

For example, if ◦ is a simple addition, then the next prefix element of the ordered set [3, 1, 2, 0, 4, 1, 1, 3] is ∑ai

= 15.Blelloch’s procedure to calculate the prefix operations on a binary tree requires two phases (Fig. 3). In the

trunkphase, the left value L is saved locally as Lsave and it is added to the right value R, which is passed on

toward the root. This continues until the parallel-prefix element 15 is found at the root.

3.3 Folded tree

However, a straightforward binary tree implementation of Blelloch’s approach as shown in Fig.3 costs a

significant amount of area as n inputs require p= n−1 PEs. To reduce area and power, pipelining can be traded

for throughput. With a classic binary tree, as soon as a layer of PEs finishes processing, the results are passed on

and new calculations can already recommence independently. The idea presented here is to fold the tree back

onto itself to maximally reuse the PEs. In doing so, p becomes proportional to n/2 and the area is cut in half. The

interconnect is reduced. On the other hand, throughput decreases by a factor of log2(n) but since the sample rate

of different physical phenomena relevant for WSNs does not exceed 100 kHz, this leaves enough room for this

tradeoff to be made. This newly proposed folded tree topology is depicted in Fig.1 on the right, which is

functionally equivalent to the binary tree on the left.

133 | P a g e

IV. PROGRAMMING THE FOLDED TREE

Now it will be shown how Blelloch’s generic approach for an arbitrary parallel prefix operator can be

programmed to run on the folded tree. As an example, the sum-operator is used to implement a parallel-prefix

sum operation on a 4-PE folded tree.

First, the trunk-phase is considered. At the top of Fig. 4,a folded tree with four PEs is drawn of which PE3 and

PE are hatched differently. The functional equivalent binary tree in the center again shows how data moves from

leaves to root during the trunk-phase. It is annotated with the letters L and R to indicate the left and right input

value of inputs A and B. In accordance with Blelloch’s approach, L is saved as Lsave and the sum L+R is

passed. Note that these annotations are not global, meaning that annotations with the same name do not

necessarily share the same actual value. This is tailored toward executing the key store-and-calculate operation

of the parallel prefix algorithm on a tree.

The PE program for the prefix-sum trunk-phase is given at the bottom of Fig. 4. The description column shows

how data is stored or moves, while the actual operation is given in the last column. The write/read register files

(RF) columns show how incoming data is saved/retrieved in local RF, e.g., X@0bY means X is saved at address

0bY, while 0bY@X loads the value at 0bY into X. Details of the PE data path and the trigger handshaking,

which can make PEs wait for new input data.

Figure 4: Implications of using a folded tree (four4-PE folded tree shown at the top)

Now, the twig-phase is considered using Fig. 5. The tree operates in the opposite direction, so an incoming

value (annotated as S) enters the PE through its O port [see Fig. 4(top)].Following Blelloch’s approach, S is

passed to the left and the sum S + Lsave is passed to the right. the incoming value is passed to the left, followed

by passing the sum of this value with Lsave0 to the right.Note that here as well none of these annotations are

global. The way the PEs is activated during the twig-phase again influences how the programming of the folded

tree must happen.

134 | P a g e

Figure 5: Annotated twig-phase graph of 4-PE folded tree

V. SIMULATION RESULTS

UNFOLDED KOGGE STONE ADDER WSN

Figure 6: Simulation result of 8-bit unfolded Kogge-stone adder WSN

5.1Folded Single Trunk Phase

Figure 7: Simulation result of 8-bit fold Trunk Phase test bench WSN

135 | P a g e

Figure 8: Simulation result of 8-bit fold Trunk Phase WSN

5.2 Folded single Twig Phase

Figure 9: Simulation result of 8-bit fold Twig Phase WSN

Figure 10: Simulation result of 8-bit fold Twig Phase WSN

136 | P a g e

5.3 Folded single twig phase

Figure 11: Simulation result of 8-bit Fold Single Twig Phase Folded Two Trunk Phase

Figure 12: Simulation result of 8-bit Fold Two Trunk WSN

5.4 Fold Sensor Node

Figure 13: Simulation result of 8-bit Folded Sensor Node Kogge-stone adder

137 | P a g e

VI. UNFOLDED KOGGE-STONE ADDER WSN

Figure 14: Top-level of 8-bit Unfold Kogge-stone WSN

Figure 15: Internal block of 8-bit Unfold Kogge-stone WSN

Figure 16: Top level of 8-bit Fold Single Trunk WSN

138 | P a g e

Figure 17: Internal block Fold trunk phase WSN

Figure 18: Top-level Fold trunk phase WSN

Figure 19: Top-level Fold twig phase WSN

139 | P a g e

Figure 20: Internal block Fold Twig Phase WSN Figure 21: Top-level Fold Sensor node

Figure 22: Internal block of Fold Sensor Node Figure 23: Top-level of Fold single twig phase

Figure 24: Top-level of fold two trunk phase

140 | P a g e

VII. TABULAR COLUMNS

A r c h i t e c t u r e s No.of slices No.of LUTs No.of IOBs Accessing time

Unfolded tree architecture

By using Kogge-stone adder

160

278

 70

4.875ns

Folded tree architecture

By using Kogge-stone adder

125

217

67

2.010ns

Table 1.1: Comparison of unfolded and folded Kogge-stone adder WSN for 8-bit

Tabular 1.2: Device utilization summary of 8-bit Kogge-stone Folded tree WSN

VI. CONCLUSION

This paper presented the folded tree architecture of a digital signal processor for WSN applications. The design

exploits the fact that many data processing algorithms for WSN applications can be described using parallel-

prefix operations, introducing the much needed flexibility. Energy is saved thanks to the following: 1) limiting

the data set by pre-processing with parallel-prefix operations; 2) the reuse of the binary tree as a folded tree; and

3) the combination of data flow and control flow elements to introduce a local distributed memory, which

removes the memory bottleneck while retaining sufficient flexibility. It consumes down to 8 pJ/cycle. Compared

to existing commercial solutions, this is at least 10× less in terms of overall energy and 2–3× faster. In future

work to using the router in the end of data reaching,it is very useful to send the data in multiple nodes.

REFERENCES

[1] Cedric Walravens and Wim Dehaene, “Low-Power Digital Signal Processor Architecture for Wireless

Sensor Nodes”, in Proc. Design, Automat. Test Eur. Conf. Exhibit.,2013.

[2] C.Walravens and W.Dehaene, “Design of a low-energy data processing architecture for wsn nodes,” in Proc.

Design, Automat. Test Eur. Conf. Exhibit., Mar. 2012, pp. 570–573.

[3] M.Hempstead, D.Brooks, and G.Wei, “An accelerator-based wireless sensor network processor in 130 nm

cmos,” J. Emerg. Select. Topics Circuits Syst., vol. 1, no. 2, pp. 193–202, 2011.

[4] N.Weste and D.Harris, CMOS VLSI Design: A Circuits and Systems Perspective. Reading, MA, USA,

Addison Wesley, 2010.

[5] O.Girard. (2010). “OpenMSP430 processor core, available at opencores.org.

D e v i c e U t i l i z a t i o n S u m m a r y (e s t i m a t e d v a l u e s) | [-]

Logic Utilization U s e d A v a i l a b l e U t i l i z a t i o n

Number of Slices 1 2 5 1 9 2 0 6 %

Number of Slices Flip Flops 9 9 3 8 4 0 2 %

Number of 4 input LUTs 2 1 7 3 8 4 0 5 %

Number of bonded IOBs 6 7 1 4 1 8 7 %

Number of GCLKs 2 8 2 5 %

141 | P a g e

[6] S.Mysore, B.Agrawal, F.T.Chong, and T.Sherwood, “Exploring the processor and ISA design for wireless

sensor network applications,” in Proc. 21th Int. Conf. Very-Large-Scale Integr. (VLSI) Design, 2008, pp.

59–64.

 [7] M.Hempstead, J.M.Lyons, D.Brooks, and G.Y.Wei, “Survey of hardware systems for wireless sensor

networks,” J. Low Power Electron., vol. 4, no. 1, pp. 11–29, 2008.

[8] J.Hennessy and D.Patterson, Computer Architecture A Quantitative Approach, 4th ed. San Mateo, CA:

Morgan Kaufmann, 2007.

[9] P.Sanders and J.Träff, “Parallel prefix (scan) algorithms for MPI,” in Proc. Recent Adv. Parallel Virtual

Mach. Message Pass. Interf., 2006, pp. 49–57.

 [10] H.Karl and A.Willig, Protocols and Architectures for Wireless Sensor Networks, 1st ed. New York: Wiley,

2005.

[11] V.N.Ekanayake, C.Kelly, and R.Manohar, “BitSNAP: Dynamic significance compression for a low energy

sensor network asynchronous processor,” in Proc. IEEE 11th Int. Symp. Asynchronous Circuits Syst., Mar.

2005, pp. 144–154.

[12] L.Nazhandali, M.Minuth, and T.Austin, “SenseBench: Toward an accurate evaluation of sensor network

processors,” in Proc. IEEE Workload Characterizat. Symp., Oct. 2005, pp. 197–203.

[13] B.A.Warneke and K. S.J.Pister, “An ultra-low energy microcontroller for smart dust wireless sensor

networks,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers. Feb. 2004, pp. 316–317.

[14] M.Hempstead, M.Welsh, and D.Brooks, “Tinybench: The case for a standardized benchmark suite for

TinyOS based wireless sensor network devices,” in Proc. IEEE 29th Local Comput. Netw. Conf., Nov.

2004, pp. 585–586

