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ABSTRACT 

In this paper presents a novel adaptive estimation of stator and rotor resistance for induction motor drives. 

Based on the adaptive variable structure identifier that provides finite time convergent estimate of the induction 

motor rotor resistance under feasible persistent of excitation condition. The rotor resistance scheme provides 

standard dynamic model of induction motor expressed in a fixed reference frame attached to the stator. The 

available variables are the rotor speed, stator currents and voltages. A simplified rotor resistance estimator is 

robust with respect to variation of the stator resistance, measurement noise, modeling errors, discretization 

effects and parameter uncertainties. This method has been tested in closed loop configuration by using a non-

linear controller which is adaptive with respect to the rotor resistance. To design a rotor resistance estimation 

algorithm assuming that there exists control input which can stabilize the motor in a wide range of operating 

points. The proposed estimation scheme intended to improve performance and efficiency of currently available 

induction motor control algorithms. It is possible to estimate stator and rotor resistance for induction motor 

drives using MATLAB/ SIMULINK. 

Index Terms: Parameter estimation, non-linear observer, equivalent injection term, adaptive 

control, sliding mode control. 

 

I. INTRODUCTION 

In power electronics and drives technology there is a nonlinear control theory stimulated recent efforts in the 

design of complex nonlinear control algorithms for induction motors (IMs). To obtain both high dynamic 

performance and efficiency compare to dc motors and permanent magnet synchronous motors are available in 

industry. The induction motors is widely used in the industry because of its good self- starting capability, simple 

and rugged structure, low cost and reliability. It is a multivariable, non-linear and highly coupled process with 

time varying parameters and state estimation. Under the hypothesis of linear magnetic circuit and balanced 

operating conditions, the classical fifth-order IM model is bilinear. The rotor resistance and stator resistance 

may vary up to 100% and 50% of their values respectively, during these operation rotor will be heating. 

Standard tests conduct for estimation of IM parameters includes the blocked rotor test, no-load test and standstill 

frequency response test. These tests cannot be used online normal operation of the machine. The tracking any 

desired reference signal usually required two control inputs (d-q stator voltages) and two output variables (rotor 

speed and flux modulus).The rotor flux cannot be directly measured, to estimate the rotor flux using various 

types of non-linear observers are required, based on the measurement of stator currents, stator voltages and 
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motor speed. In all electric drives, the load torque is typically unknown and flux observers used to estimate the 

rotor resistance. The field-oriented control (F.O.C.) it provides high-performance control of an IM. But F.O.C. 

methodology requires tracking of the rotor fluxes which are not usually measured. 

 IM parameter estimation is proposed using least square technique but filters are required when PWM inverter is 

used. Rotor resistance estimation for indirect field oriented control of IM based on reactive power reference 

model is presented under motoring and generating modes. Sensitivity of the algorithm to errors in other 

machines parameters is investigated but without variation of the rotor resistance. An adaptive sliding mode 

observer is used to estimate rotor flux components, rotor resistance and rotor speed for induction motor under 

the assumption that only stator currents and stator voltages are measurable. The variation of the stator and rotor 

resistance has been investigated but estimation parameters were achieved in Simulink implementation. The main 

drawback of this approach is that the rotor resistance estimator is based on a simplify model of IM which 

requires the rotor speed to vary slowly

  The rotor resistance is Rr estimated and its assumption of slowly variation of the rotor speed and its difficult to 

measure higher order harmonics.  

The effect of the stator resistance Rs variation on the estimation of Rr is also investigated as follows.

In Section II, the IM mathematical model is recalled. The design procedure of the proposed rotor resistance 

identifier is described in Section III and the proof of the finite time convergent estimate to its nominal value is 

achieved under feasible persistent of excitation (P.E.).Reference speed and flux signals are in Section IV. 

Initialization machine parameters in Section V. Simulation model and results are reported in Section VI and 

conclusions are given in Section VII. 

 

II. INDUCTION MOTOR MODEL 

The classical a-b axes transformation with a fixed reference frame attached to the stator, assuming linear 

magnetic behavior and dynamic model of a balanced induction motor is given by the following fifth-order 

nonlinear system [1], [18]: 

 
disa

dt
= −

Rs

ζLs
isa − βM

Rr

Lr
isa + β

Rr

Lr
λra + npβωλrb  

 +
1

ζLs
vsa     (1) 

 
disb

dt
= −

Rs

ζLs
isb − βM

Rr

Lr
isb + β

Rr

Lr
λrb − np βωλra  

 +
1

ζLs
vsb     (2)                           

dλra

dt
= −

Rr

Lr
λra − npωλrb +

Rr

Lr
Misa    (3)                                            dλrb

dt
= −

Rr

Lr
λrb +

np ωλra +
Rr

Lr
Misb   (4)                                            

dω

dt
=

Te

m
−

TL

m
   (5)   

 Where 

ɷ: Rotor speed 

λra, , λrb  : Rotor flux 

isa , isb  :Stator currents 
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vsa, vsb: Control inputs are stator voltages 

ω, isa , isb :Measured variables 

λra ,λrb :Unknown variables 

TL : External load torque 

m: Total motor and Load moment of inertia 

Rr   : Rotor winding resistance 

Rs  : Stator winding Resistance 

Lr  : Rotor inductance 

Ls  : Stator inductance 

M : Mutual inductance 

Te : Electromagnetic Torque 

nP : Number of pole pairs 

To simplify the notations, we use ζ =1 - 
M2

LS Lr
 (leakage parameter) and the constant β = 

M

ζLs Lr
. 

The following assumptions will be considered until further notice. 

i) Stator currents and voltages are bounded signals; 

ii) Rotor resistance Rr ε ΩRr, where ΩRr is a compact set of ℝ. 

 To design a rotor resistance estimation algorithm assuming that there exists a control input which can stabilize 

the motor in a wide range of operating points. 

 

III. ROTOR RESISTANCE ALGORITHM 

To derive an estimation of the rotor resistance, let us consider the following observer (K > 0 is a constant 

designed parameter): 

 
di  sa

dt
= −

Rs

ζLs
isa − βM

R r

Lr
isa + β

R r

Lr
λ ra + npβωλ rb  

 +
1

ζLs
vsa + Ksign(isa − i sa ) (6) 

 
di  sb

dt
= −

Rs

ζLs
isb − βM

R r

Lr
isb + β

R r

Lr
λ rb − np βωλ ra  

 +
1

ζLs
vsb + Ksign(isb − i sb ) (7) 

dλ ra

dt
= −

R r

Lr
λ ra − npωλ rb +

R r

Lr
Misa + ua   (8) 

dλ rb

dt
= −

R r

Lr
λ rb + np ωλ ra +

R r

Lr
Misb + ub   (9)   

Where ua  and ub  are additional signals yet to be designed and “sign” is the well known “sign” function.  

The estimated quantities are shown as 𝑥  and the error quantities are shown as 𝑥 = 𝑥 − 𝑥 . (e.g., 𝑖 𝑠 = 𝑖𝑠 − 𝑖 𝑠 ,𝜆 𝑟 =

𝜆𝑟 − 𝜆 𝑟 , 𝑅 𝑟 = 𝑅𝑟 − 𝑅 𝑟). The dynamics of the observer error can be computed using (1) - (4) and (6) - (9) as 

follows. 

 
di  sa

dt
= −Ksign i sa  +

β

Lr
 Rrλ ra − R rλ ra   

 +βnpωλ rb −
β

Lr
Misa R r     (10)     

di  sb

dt
= −K sign i sb  +

β

Lr
 Rrλ rb − R rλ ra   
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 −βnpωλ ra −
β

Lr
Misb R r     (11)                  

dλ ra

dt
= −

1

Lr
 Rrλ ra − R rλ ra  − np ωλ rb  

 +
M

Lr
isa R r − ua     (12) 

 
dλ rb

dt
= −

1

Lr
 Rrλ rb − R rλ rb  + np ωλ ra  

 +
M

Lr
isb R r − ub     (13) 

The above associated error dynamics can be rewritten as   

 
di  sa

dt
= −K sign i sa  + βnpωλ rb + Rr

β

Lr
λ ra  +R r

β

Lr
(λ ra − Misa )  (14) 

 
di  sb

dt
= −K sign i sb  − βnp ωλ ra + Rr

β

Lr
λ rb  

 +R r
β

Lr
(λ rb − Misb )   (15) 

 
dλ ra

dt
= −ua −

Rr

Lr
λ ra −  np ωλ rb  

 −
R r

Lr
(λ ra − Misa )   (16)                                          

dλ rb

dt
= −ub −

Rr

Lr
λ rb +  np ωλ ra  

 −
R r

Lr
(λ rb − Misb )   (17) 

 To achieve design of the rotor resistance identifier the following additive assumption is required. 

Assumption (iii): It is assumed that the following rotor resistance identifies ability condition holds: 

 λr t − Mis(t) =  p(t) ≥ δ > 0∀t ≥ 0.  (18) 

 

Remark 1 

The identify ability condition (18) can be replaced by the following persistency of excitation (P.E.) condition. 

There exists α > 0, T > 0, t0 > 0 such that  t ≥ 0. 

 P s P(s)Tds ≥
t+T

t
 αI > 0  (19)    

                        

Remark 2 

The persistency of excitation condition (19) is often satisfied when the IM is fed by PWM power inverter. This 

is the case of the control system considered in this work.  

By considering the following Lyapunov candidate function 

V1=
1

2
isa
~ 2 +

1

2
isb
~ 2   (20) 

And computing its time-derivative along the trajectories of (14) and (15), we obtain 

𝑉 
1 = −𝐾 𝑖 𝑠𝑎  + 𝑅𝑟   

𝛽

𝐿𝑟

𝑖 𝑠𝑎λ ra + βωnp𝑖 𝑠𝑎λ rb  

           +R r
𝛽

𝐿𝑟
𝑖 𝑠𝑎 λ ra − Misa  − K 𝑖 𝑠b

 + 𝑅𝑟   
𝛽

𝐿𝑟
𝑖 𝑠𝑏λ rb  

       −βωnp𝑖 𝑠𝑏λ ra + R r
𝛽

𝐿𝑟
𝑖 𝑠𝑏 λ rb − Misb  . (21) 
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From (21), by taking into account assumptions (i) and (ii), the following inequalities hold: 

𝑉 
1 ≤ − 𝑖 𝑠𝑎   𝐾 − 𝛽  

𝑅𝑟

𝐿𝑟

λ ra +  ωnpλ rb +
𝑅 𝑟

𝐿𝑟

 λ ra − Misa     

− 𝑖 𝑠𝑏   𝐾 − 𝛽  
𝑅𝑟

𝐿𝑟

λ rb −  ωnpλ ra +
𝑅 𝑟

𝐿𝑟

 λ rb − Misb     

≤ − 𝑖 𝑠𝑎   𝐾 − 𝛽  
𝑅𝑟

𝐿𝑟

 λ ra  +  ωnp λ rb  +
 𝑅 𝑟  

𝐿𝑟

  λ ra  − M isa      

− 𝑖 𝑠𝑏   𝐾 − 𝛽  
𝑅𝑟

𝐿𝑟

 λ rb  +  ωnp  λ ra  +
 𝑅 𝑟  

𝐿𝑟

  λ rb  − M isb      (22) 

Assuming that the estimated 𝑅 𝑟  and 𝜆 𝑟  are bounded, let positive constants ξ
a
 and ξ

b
 be available such that 

ξ
a

β
=

Rr

Lr

 λ ra  
m

+ ωnp  λ rb  
m

 

       +
 R r  

m

Lr
  λ ra  

m
+ M isa  m   

ξ
b

β
=

Rr

Lr

 λ rb  
m

+ ωnp λ ra  
m

 

       +
 Rr  

m

Lr
  λ rb  

m
+ M isb  m     (23)                            

Where  .  m  denotes the maximum value of . 

 

Remark 3 

The values of the constants  𝜉𝑎   and 𝜉𝑏  can be evaluated for any given operating condition on the IM by using 

the nominal values of the rotor resistance and inductance to compute the value of (𝑅𝑟/𝐿𝑟 ) and the maximum 

admissible values of the rotor resistance and rotor flux estimation errors in transient period. 

To evaluate the nominal value of the rotor time constant without using the nominal values of Rr and Lr in the 

case of Squirrel Cage IM. 

By choosing 

                    K > sup (ξa , ξb)  (24)    

 The derivative of  𝑉1  will be negative definite ∀𝑖 𝑠𝑎  ≠ 0 and ∀𝑖 𝑠𝑏   ≠ 0. Therefore the observer errors 𝑖 𝑠𝑎   

& 𝑖 𝑠𝑏 converge to 0 in finite time if K is chosen such that condition (24) is satisfied. 

 The following quadratic function of the rotor flux observer error and rotor resistance estimation error: 

V2 =
1

2
λ ra

2
+

1

2
λ rb

2
+

1

2
R r

2
  (25) 

Its time-derivative along the trajectories of (16) and (17) yields  

 V2
 = −

Rr

Lr
λ ra

2
− uaλ ra +

 Rr 

Lr
λ ra  Misa − λ ra     −

Rr

Lr
λ rb

2 − λ rb ub +
Rr 

Lr
λ rb (Misb − λ rb ) + R rR  r.(26)                          

If we choose ua ,  ub  and R  ras follows (kRr
> 0 is designed parameter). 

ua=
R r

Lr
(Misa − λ ra )    

ub=
R r

Lr
(Misb − λ rb )       
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 R  r = −kRr
sign R r              (27) 

V2
  Becomes 

V2
 = −

Rr

Lr
 λ ra

2
+ λ rb

2
 − kRr

 R r .       (28) 

Consequently, under P.E. (19) and if they are auxiliaries variables ua , ub  and Rr
   are chosen as in (27), V2

  will be 

negative definite λ ra ∀≠ 0, λ rb  ≠ 0  and ∀ R r ≠ 0. Thus λ r  and R r  converge in finite time to their nominal 

values λr  and Rr  with the convergence rate 
1

Tr
=

Rr

Lr
 and kRr

 respectively. 

 

Remark 4 

If kRr
 > 

1

Tr
, the rotor resistance convergence will be faster than that of the rotor flux. In contrary, if kRr

<
1

Tr
, the 

rotors flux convergence will be faster than that of rotor resistance. The case kRr
=

1

Tr
 is difficult to implement in 

practice since Tr  is assumed to be unknown and is time varying but verified in normal operation of the Induction 

motor  Trmin ≤  Tr  ≤  𝑇𝑟𝑚𝑎𝑥 . 

To achieve the design of the rotor resistance estimator, implementable expression for 𝑅 𝑟  is required. Under 

condition (24), a sliding-mode occurs in finite time on the 2-D manifold 

i sa = isa − i sa  = 0;    

 i sb = isb − i sb  = 0                                 (29) 

The equivalent injection terms [19] can be computed by solving the equation. 

 i  sa = 0 ;   i  sb = 0.                             (30) 

Consequently equations (14) and (15) can be rewritten as 

−Waeq + βnpωλ rb + Rr

β

Lr

λ ra  

+R r
β

Lr
 λ ra − Misa  = 0    (31) 

−Wbeq − βnpωλ ra + Rr

β

Lr

λ rb  

+R r
β

Lr
 λ ra − Misb  = 0                 (32) 

Where,  Waeq = [Ksign i sa  ]eq and 

  Wbeq = [Ksign i sb  ]eq 

The expressions of the equivalent injection terms Waeq and  Wbeq  can be deduced from (31) and (32) but these 

expressions cannot be implemented in practice since Rr
  and λr

  are not available. 

To overcome this problem, we approximated the equivalent injection terms Waeq and  Wbeq  by using the first 

order low-pass filters as in (19). 

If the design parameter KRr
 is chosen such that 

 0 < kRr
<

1

 Trn
, with  Trn =

Lrn

Rrn

               (33)  

Where Lrn  and Rrn  are the nominal values of the rotor inductance and rotor resistance and Trn  is the nominal 

rotor time constant, the rotor flux convergence will be faster than that of the rotor resistance. 
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Under this assumptions and P.E condition (19), the implementable expression of the rotor resistance estimation 

error Rr
   can be derived from (31) and (32) by neglecting the terms containing the rotor flux estimation error. We 

then obtain 

From (31) 

R r =
Lr

β

 λ r − Mis 
T

Weq

 λ r − Mis 
2  

With  WT
eq = (Waeq , Wbeq )    (34)  

 

Remark 5  

The denominator of (34) can become zero in transient periods since the identify ability condition (18) or P.E 

condition (19) is based on the real value of the flux and not on the estimated value. However, this singularity 

cannot affect significantly the estimate value of the rotor resistance since the adaptation law (27) uses the “sign” 

function. A singularity detector can also be used and such algorithm can provide as output the nominal value of 

the rotor resistance when the singularity is detected. 

Finally, a novel adaptive estimation of stator and rotor resistance for induction motor drives can be summarized 

as follows: 

 
di  sa

dt
= −

Rs

ζLs
isa − βM

R r

Lr
isa + β

R r

Lr
λ ra + npβωλ rb  

 +
1

ζLs
vsa + Ksign(isa − i sa ) 

 
di  sb

dt
= −

Rs

ζLs
isb − βM

R r

Lr
isb + β

R r

Lr
λ rb − npβωλ ra  

 +
1

ζLs
vsb + Ksign(isb − i sb ) 

 
dλ ra

dt
= −

R r

Lr
λ ra − npωλ rb +

R r

Lr
Misa + ua  

 
dλ ra

dt
= −

R r

Lr
λ ra − npωλ rb +

R r

Lr
Misb + ub  

  ua =
R r

Lr
(Misa − λ ra ),  

  ub =
R r

Lr
(Misb − λ rb ) 

  R  
r = −kRr

sign R r  

= −kRr
sign  

Lr

β

 λ r−Mis 
T

Weq

 λ r−Mis 
2                      (35) 

 

IV.  INITIALIZATION PARAMETERS 

rr=0.52;  %rotor resistance 

rs=0.22;  %stator resistance 

lls=0.052; %stator inductance 

llr=0.0516; %rotor inductance 

lm=0.0495; %mutual inductance 
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fb=50;  %base frequency 

p=4;  %number of poles 

np=2;  %number of poles per pair 

j=1.5;   %moment of inertia 

sigma=0.096; 

B=lm/(sigma*lls*llr); 

M=lm; 

lr=llr+lm; 

tr=lr/rr; 

% impedance and angular speed calculations 

wb=2*pi*fb; %base speed 

xls=wb*lls; %stator impedance 

xlr=wb*llr; %rotor impedance 

xm=wb*lm; %magnetizing impedance 

xmlstar=1/(1/xls+1/xlm+1/xlr); 

vd=300; 

 

V. SPEED AND FLUX REFERENCE SIGNALS 

 

Fig.1 Speed and flux reference signals. (i) Speed reference in rotor resistance, (ii) Speed reference in 

stator resistance, (iii) Rotor flux. 
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VI. SIMULIATION MODELS 

Fig .2 Tracking performance of the proposed method with respect to variation of the rotor 

resistance

 

Fig.2.1 (a) (i) Control voltage (ii) Stator current (iii) Observer error (iv) Load torque. 
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Fig.2.2 (b) (i) Rotor speed (ii) Estimated rotor flux magnitude (iii) Estimate of the rotor resistance. 

 

 

Fig.3 Proposed method at relatively low speed (63 rad/s) with 100% variation of the stator resistance Rs 
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Fig.3.1 (a) (i) Control voltage, (ii) Stator current, (iii) Observer error, (iv) Load torque. 

 

 

Fig.3.2 (b) (i) Rotor speed, (ii) Estimated rotor flux magnitude, (iii) Stator resistance, (iv) 

Estimated rotor resistance. 

The effectiveness of the proposed algorithm combined with a nonlinear controller which stabilizes the rotor flux 

magnitude and the rotor speed to references values with adaptation of the rotor resistance and load torque. 

 

Remark 6 

The combination of both estimation algorithms (rotor resistance and load torque estimators) still converges 

since it has been proved in [7] that the proposed nonlinear controller can stabilize the IM to reference 

trajectories when the estimated values of and are bounded in the operational domain and the (P.E.) condition 

satisfied. 
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In all cases, Simulation models have been performed during motor startup and after the motor are operated 

under load torque TL. After the motor startup and in all Simulink implementation, the applied external unknown 

load torque is estimated by using the method described in [7]. In all cases the parameters of the rotor resistance 

identifier (35) were chosen as follows  

K=30000, KRr=0.6.The equivalent injection terms Waeq and Wbeq has been approximated using first order low-

pass filter with time- constant of 5ms.Note that the value of KRr verifies condition (33) since 1/Trn=10.08s
-

1
.Using expression (23), the value of the constant 𝜉𝑎   or 𝜉𝑏  is approximately 5500.Therefore, the value of K also 

verifies condition (24).Both speed and flux reference signals used in all Simulation model are given in Fig.1. 

In the first Simulation model, the performance of the algorithm to track the variation of the rotor resistance has 

been investigated. In this case, the variation of rotor resistance has been carried out using rotor resistance 

estimation algorithm. The results demonstrated that the proposed algorithm has a powerful approach to track the 

variation of the rotor resistance are reported in Fig.2. 

In the second Simulation model, the proposed  method with respect to the variation of the stator resistance when 

the motor operates relatively low speed (63 rad/s). The results show that there is no significant effects on the 

rotor resistance estimate for a wide range of variation of the stator resistance are reported in Fig.3. 

In all cases, the estimate of the rotor resistance is very accurate and exhibits a short convergence transient. The 

steady-state error between the estimated rotor resistance and its nominal value is due to the measurement noise, 

mismatching between the motor and the model parameters. 

 

VII. CONCULSION 

In this paper a simple structure has been designed to estimate the stator and rotor resistance for induction motor 

drives. It has been tested in closed-loop configuration by using a non-linear controller adaptive with respect to 

the rotor resistance. The finite time convergence of the rotor resistance estimate to its nominal value has been 

achieved under mild Persistency excitation operating conditions of the induction motor.  

An adaptive control algorithm achieved very good tracking performance, for a wide range operation of 

induction motor with a variation of the rotor resistance (up to 87%) is beneficial for motor efficiency.  

This method also presented high decoupling performance and very interesting robustness properties. When the 

motor operates relatively low speed, these results shows that there is  no significant effect on the rotor resistance 

estimate with respect to variation of the stator resistance (up to 100%).  

A simplified rotor resistance estimator has robustness properties with respect to variation of the stator resistance, 

modeling errors, discretization effects and parameter uncertainties.  

The extension of the proposed technique in speed    sensorless adaptive control of induction motor drives. 

APPENDIX A INDUCTION MOTOR DATA 

Rated power                        5KW 

Rated torque 32NM 

Rated frequency 50HZ 

Rated current 22.9A 

Stator resistance 𝑅𝑠𝑁  0.22Ω 

Rotor resistance 𝑅𝑟𝑁  0.52 Ω 
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Stator inductance 𝐿𝑠𝑁  0.052H 

Rotor inductance 𝐿𝑟𝑁  0.0516H 

Mutual inductance 𝑀𝑁 0.0495H 

Number of poles 𝑛𝑝  2 

Motor-load inertia 𝑚 0.12kg.𝑚2 
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