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Abstract 

Data in the astronomical image processing are characterized by the more presence of noise, In this 

images noise properties and detector properties are available. The data signal can be a 2  

Dimensional image, a 1 Dimensional time- series, a 3D data  cube, and variants of these. Signal is 

what we term the scientifically interesting part of the data. Signal can be compressed, whereas noise 

by cannot be compressed. Effective separation of signal and noise is of great importance in the 

astronomical image processing. Noise is the biggest problem in astronomical image processing. If we 

can estimate noise, through knowledge of instrument properties or through image processing tools, 

subsequent result obtained would be much better. In fact, major problems would disappear if this 

were the case image restoration or sharpening could become simpler. Initial focus is estimation of 

noise in the image using non-orthogonal trous waveletalgorithms. 
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I INTRODUCTION 

Images of astronomical objects are usually taken with electronic detectors such as a CCD (Charge Coupled 

Device). Similar detectors are found in normal digital cameras. Telescope images are nearly always greyscale, 

but nevertheless contain some colour information. An astronomical image may be taken through a colour filter. 

Different detectors and telescopes also usually have different sensitivities to different colors (wavelengths). 

Noise is a fundamental problem in image processing and it becomes more important while dealing with very 

faint astronomical objects. A well known  toolfor noise removal is filtering. Conventional one dimensional image 

filters don’t provide proper out  for astronomical images, so we have to use non- orthogonal filters based on 

wavelettransforms. 

We have used the wavelet transform, which furnishes a multi-faceted approach for describing and modeling 

data. There are many 2D wavelet transform algorithms for astronomical image processing such as Chui; Mallat, 

Burrus. The most widely-used bi- orthogonal wavelet transform is Mallat, This method is based on the principle 

of reducing the redundancy of the information in the transformed data. Other wavelet transform algorithms 

exist, such as the Feauveau algorithm which is an orthogonal transform, or the `a trous algorithm which is non- 

orthogonal and furnishes a redundant dataset. The trous algorithm presents the followingadvantages: 
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 The computational requirement is reasonable. 

 The reconstruction algorithm istrivial. 

 The transform is known at each pixel, allowing position detection without any error, and 

withoutinterpolation. 

 We can follow the evolution of the transform from one scale to thenext. 

 Invariance under translation is completely verified. 

 The transform isisotropic. 

Most Astronomical image are isotropic so trous algorithm is best suited for filtering process. 

 

II MULTISCALE TRANSFORMS TROUS ISOTROPIC WAVELET TRANSFORM 

The wavelet transform of a signal produces, at each scale j, a set of zero-mean coefficient values {wj}. Using an 

algorithm trous method this set {wj} has thesame number of pixels as the signal and thus this wavelet transform 

is a redundant one. using a wavelet defined as the difference between the scaling functions of two 

successivescales 

( 12ψ( x2 ) = φ(x) − φ( x2 )),the original signal c0, with a pixel at position k, can be expressed as the sum of all 

the wavelet scales and the smoothed arraycJ 
 

 

A summary of the `a trous wavelet transform algorithm is as follows. 

1. Initialize j to 0, starting with a signal cj,k. Index k ranges over allpixels. 

2. Carry out a discrete convolution of the data cj,k using a filter h , yielding cj+1,k. The convolution is an 

interlaced one, where the filter’s pixel values have a gap (growing with level, j) between them of 2j pixels, 

giving rise to the name `a trous.“Mirroring”is used at the data extremes. 

3. From this smoothing we obtain the discrete wavelet transform, wj+1,k =cj,k −cj+1,k. 

4. If j is less than the number J of resolution levels wanted, then increment j and return to step2. 

The set w = {w1,w2, ...,wJ , cJ}, where cJ is a last smooth array, represents the wavelet transform of the data. 

We denote as W the wavelet transformoperator. If the input data set s has N pixels, then its transform w (w = 

Ws) has (J + 1)N pixels. The redundancy factor is J + 1 whenever J scales are employed. The discrete filter h is 

derived from the scaling function φ(x) . In our calculations, φ(x) is a sp line of degree 3, which leads to the filter 

h = ( 1/16 , 1/4 , 3/8 , 1/4 , 1/16 ). A 2D or a 3D 

implementation can be based on two 1D sets of convolutions 
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Figure 1 Galaxy NGC 2997. 

 

.  

Figure 2 Wavelet transform of NGC 2997 by the `a trous algorithm 

The fig 1 image is given exactly by the sum of these six images. 

An important property of the `a trouswavelet transform over other wavelet transforms is shift invariance. Lack of 

independence to pixel shift is a problem in the case of any pyramidal wavelet transform due to the down-

sampling or decimating. The reason is shift-variance is introduced because Nyquist sampling is violated in each  

ofthe  subbands – wavelets are not ideal filters. By not down sampling the problem is avoided. The `a trous 

algorithm is in fact a fast implementation of  a wavelet transform with no downsampling. 

 

Figure 3 scale as a perspectiveplot. 

 

IIITHE MULTI-RESOLUTION SUPPORT 

A multi-resolution support of a data set describes in a logical or Boolean way. It depends on several parameters. 

– The inputdata. 

– The algorithm used for the multi-resolution decomposition. 

– Thenoise. 
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– All additional constraints we want the support to satisfy. 

Such a support results from the data, the treatment (noise estimation, etc.),and from knowledge on our part of 

the objects contained in the data (size of objects, linearity, etc.). In the most general case, a priori information is 

not available to us.First step is calculated using wavelet transform in which we can need to calculate wavelet 

coefficient. Then the noise induction and removal we have considered Gaussian noise only. 

A Noise Modeling 

Gaussian noise. If the distribution of wj , l is Gaussian, with zero mean and standard deviation σj , we have the 

probability density 
 

 

Rejection of hypothesis H0 depends (for a positive coefficient value) on: 

 

 

and if the coefficient value is negative, it depends on 

 

Given stationary Gaussian noise, it suffices to compare wj ,l to kσj . Often k is chosen as 3, which corresponds 

approximately to ǫ = 0.002. If wj, l is Small , it is not significant and could be due to noise. If wj, l is large, it is 

significant: 

if | wj, l | ≥ kσj then wj, l is significant 

if | wj, l | <kσj then wj, l is not significant 

So we need to estimate, the noise standard deviation at each scale. These standard deviations can be determined 

analytically, but the calculations can become complicated. so this valves need to be assumed from available data 

set. 

 

B Automatic Estimation of Gaussian Noise 

k-sigma clipping. The Gaussian noise σs can be estimated automatically in a data set s. This estimation is 

particularly important, because all the noise standard deviations σj in the scales j are derived from σs. Thus an 

error associated with σs will introduce an error on all σj . Noise is therefore more usefully estimated in the high 

frequencies, where it dominates thesignal 

 

Table 1 for the first seven resolution levels. 

 

MAD estimation. The median absolute deviation, MAD, gives an estimation of the noise standard deviation: σm 
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= MED(| w1 |)/0.6745, where MED 

is the median function. Our noise estimate σsis obtained by: 

 

 

C Estimation of Gaussian noise from the multi resolution support. 

1. Estimate the standard deviation of the noise in s: we have σs^(0). 

2. Compute the wavelet transform (`a trous algorithm) of the data s with Jscales, providing the 

additivedecomposition. 

3. Set n to0. 

4. Compute the multiresolution support M which is derived from the wavelet coefficients and fromσ(n) 

5. Select the pixels which belong to the set S: ifMj,k 

= 0 for all j in 1 . . . J 

6. For all the selected pixels k, compute the valuessk 

− cJ,k and compute the standard deviation σs^(n+1) of these values (we compute the difference between  s and 

cJ in order not to include the background in the noiseestimation). 

7. n = n + 1 

This method converges in a few iterations, and allows noise estimation to be improved. 

 

IV SIMULATION : IMAGE WITH GAUSSIAN NOISE 

 

A simulated image containing stars and galaxies is shown in (top left). The simulated noisy image, the filtered 

image and the residual image are respectively shown in top right, bottom left, and bottom right. We can see that 

there is no structure in the residual image. The filtering was carried out usingthe 

Multi resolution support. 

 

Fig 4 (a) Simulated image, (b) simulated image and Gaussian noise, (c) filtered image, and (d) residual 

image. 
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If a realization of the noise can be generated, the detection  level can be determined by taking the wavelet 

transform of the noise map, calculating 

the histogram of each scale, and deriving the thresholds from the normalized histograms. The normalized 

histograms give us an estimation of the probability density function of a wavelet coefficient due to noise. 

 

V CHOICE OF MULTISCALETRANSFORM 

Shift variance is the property which is different in trous algorithm with other wavelet transform algorithms. The 

problem is no separate phase shift is available in any wavelet transforms such as Haar, Mallet. this problem is 

due to down-sampling. In down sampling the Nyquist criteria is not obeyed as filters created by wavelet are not 

ideal filters .So by using trousalgoritm for wavelet the down sampling problem is avoided. The `a trous 

algorithm is a fast and accurate implementation of a wavelet transform without the need of down sampling. 

 

VI CONCLUSION 

The trous transform is isotropic. it provides simplified analysis and proper interpretation of noise in the given 

images as compared to other non isotropicwavelet transforms .From the results obtained trous algorithm seems 

appropriate for images containing no favored orientation as in the case of Astronomicalimages. 
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