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Abstract 

The purpose of this paper is to provide a detailed review of the Fast Fourier Transform and Radix-2 

computational algorithm with hardware architecture and for FFT and its comparison on the basis of LUTs 

used , Power and operating Frequency. 

 

Introduction 

The Fast Fourier Transform (FFT) method is a widely used algorithm for computing the discrete Fourier 

transform (DFT) of a sequence of numbers. The DFT is a mathematical technique that transforms a signal 

from the time domain to the frequency domain, which is useful in many fields such as signal processing, 

image processing, and audio processing. The basic principle of the FFT method is to exploit the properties 

of the DFT to reduce the number of computations required to compute it. The DFT of a sequence of N 

numbers requires O(N^2) operations, which can be computationally expensive for large values of N. 

However, the FFT method reduces the number of operations required to O(N log N), making it much faster 

than the direct computation of the DFT. 

 

The FFT algorithm achieves this by dividing the input sequence of N numbers into smaller sub- sequences of 

size N/2, and recursively computing their DFTs using a divide-and- conquer approach. The smaller DFTs 

are then combined to compute the final DFT of the original sequence. The key insight behind the FFT 

algorithm is that the DFT of an N-point sequence can be expressed as the sum of two N/2-point DFTs, 

each of which can be computed using the FFT algorithm. 

 

The FFT algorithm is widely used in many applications, including audio and video compression, digital 

signal processing, and scientific computing. It is a powerful tool foranalyzing and manipulating signals in 

the frequency domain, and has revolutionized many fields of science and engineering 

There are several computational algorithms but we are going to focus on Radix-2 algorithm and for that 

first we have to understand the Digital Fourier Transform (DFT) . 

Discrete Fourier transform (DFT) 

Digital Fourier Transform (DFT) is a mathematical procedure used to determine the harmonics or 

frequency, content of a discrete signal sequence. 
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N 

Mathematical equation for DFT, 

 

 

Eq…..1 

X(k)=the kth DFT output, i.e. X(0), X(1)….etc. k= the index of the DFT output in the frequency domain 

x(n) = the sequence of input samples, x(0), x(1),x(3) etc. 

n = the time domain index of the input samples n,k=0,1,2,3,……,N-1 

j=√-1 

N = numbers of samples of the input sequence. 

For each X(m), the output term is the product of the points for point product between the input sequence 

and a sinusoidal of form cos(Ө) 

- sinusoidal(Ө). The frequency of each sinusoidal depends the number of samples N . the N separate DFT 

analysis frequencies are 

fanalysis(m) = mfs/N .............. Eq.2 

The FFT does similar Computation but in a fast manner by reducing redundant groups. Now we are going 

to discuss about Radix -2 algorithm. 

Radix-2 algorithm is a member of the family of Fast Fourier transform (FFT) algorithms. It computes the 

DFTs of the even-indexed inputs(x0,x2,...,xN-2) and of the odd-indexed inputs (x1,x3,...,xn-1),and then add 

those two results to produce the DFT output.This results in reduction of complexity from O(N2) to O(N 

logN). 

Mathematical expression: 

 

the upper equation can be written as 

X(m) = {even samples} + e -j2πk/N * {odd samples} 

here e -j2πk/N is called Twiddle Factor and can be represented by 𝜔k . 

upper equations concludes that there is no need to perform any cosine or sine multiplication to get 

X(k+N/2. It can be done by changing the sign of the twiddle factor m𝒏 and use the result of the two 
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𝒎 

𝑵 

𝑵 

summation from X(m) to get X(k+n/2). 

in simplified terms equations 

X(k) = A(k)+ m𝒌 * B(k) …… Eq.3 

X(k+N/2) = A(k)- m𝒌 * B(k) …… Eq.4 

 

Fig .1 

the upper diagram shows how the computation flows in Decimation in time for 8- point FFT and this 

diagram also called BUTTERFLY diagram. 

Decimation is basically means drastic reduction in the strength or effectiveness of something .In FFT 

there are two type of decimation exist the first is Decimation in time (DIT) and second is Decimation in 

Frequency (DIF).. If data re-orderd before FFT computation than this reordering is called Decimation in 

time and If the data gets reorderd after the computation of FFT than this reordering is called Decimation in 

Frequency.Below is the calculation scheme for a DIT 8 point FFT. Note that the output in the correct order, 

while the x(n) is pre-ordered. 

 

Fig .2 . 

And below is the calculation scheme for a DIF 8 point FFT. Note that the x[k] is output in the incorrect 

order, while the x(n) in ordered manner. 
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Fig.3 

Field Programable Gate Array (FPGA) 

FPGA stands for Field-Programmable Gate Array. It is a integrated circuit that can be reconfigured or 

programmed after manufacturing, making it highly flexible and customizable for various applications.  

A matrix of programmable logic blocks coupled by programmable interconnects makes up FPGAs. These 

logic building blocks can be set up to carry out particular tasks or create specific digital circuits. The 

routing of signals between the logic blocks is made possible by the interconnects, allowing for intricate 

connections and data flow. 

A hardware description language (HDL), such as VHDL or Verilog, is used to configure an FPGA. The 

intended circuit or system functionality is described in the HDL code. In order to specify the precise 

circuitry and interconnections, this code is then synthesized into a configuration bitstream and fed into the 

FPGA 

 

Literature Review 

Author Tarek Belabed [1] has converted the twiddle factor into an integer value for computation and to 

convert twiddle factor into integer value, the exponential coefficients were multiplied by a fixed factor which 

is equal to 2m. Only the integer part is used, and at the output’s end the result coefficients gets divided by 

the same coefficient (2m) that previously used to convert input exponential coefficients into integer. the 

factor is chosen in multiples of 2 ,because in digital system multiply by 2 can be done by left shift and 

divide by 2 is done by right shift . This operation is very fast and less expensive for an FPGA. 

To mitigate errors arising from the integerization of  twiddle  factors,  it is recommended to 

meticulously select the value 'm.' and further to optimize the multiplication strategy involves converting the 

multiplication operation into a series of left shifts. Therefore, the essence of this approach lies in 

transforming the multiplication process into a addition of left shifts, ensuring precision while 

minimizing computational complexity. 

left shift by K = multiply 2K 

This operation can only be done by choosing power coefficients of 2(2, 4, 8, 16, etc.). The idea here is to 

equate the coefficients in equivalence of power of two, which their sum is almost equal to the twiddle 

factor. 
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The article also proposes an architecture that proposes to minimize read and write times by dividing the 

RAM into two parts, each with its own address bus, one for recording the result of the real part of the FFT 

and the other for the imaginary part. Writing and reading to both RAM memories occurs simultaneously. 

The read and write counter do addressing of the two RAMs .The demultiplexer and multiplexer unit is used 

to send and receive the data from two RAMs and to the FFT. 

 

 

Fig 4. Block diagram of proposed architecture 

 

[2] In paper Kanders, Mario Garrido and others presented The 1-Million Point Fast Fourier Transform has 

been successfully implemented on a single FPGA, utilizing only the onboard memory and without requiring 

interconnected FPGAs. This achievement was made possible through the use of a pipelined Single-Delay 

Feedback (SDF) FFT architecture, which has five interconnected stages .Every stage has a radix-2 

butterfly and a rotator. The outputs of the radix -2 butterfly are connected to first-in- first-out (FIFO) buffers 

in feedback loop. This arrangement enables the system to handle single-path input and process one sample 

at every clock cycle efficiently. 

The FFT algorithm significantly influences the placement of the rotator in the architecture. Given that the 

W1M rotator is the most complex among all rotators, it is advisable to position it towards the end of the 

architecture. This is because the numerous angles in the rotator necessitate a larger data word length for 

accurate calculations. As a result, it is suggested to delay the increase in word length until later in the 

architecture to minimize the number of stages having large word lengths. This decision will impact the size 

of the buffers in the SDF stages, as each stage in the FFT reduces buffer size by half. By strategically 

placing the W1M rotator later in the architecture, the amount of required memory can be reduced.The 

W1M rotator has been specifically designed to obtain exceptional resolution, and we have carefully 

selected word lengths throughout the FFT stages to ensure precise computations and a compact data 

memory size. This comprehensive approach marks the first time these challenges have been thoroughly 

addressed in a large FFT setting. "Consequently, the suggested design not only entails minimal space, but 

also attains exceptional precision and a reasonable power usage." 

The report shows that the proposed structure fits on a single FPGA and having a large amount of resources 

left. The block random access memory [BRAM] has highest utilization among other blocks and this is 
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happened because the FFT is processing very large number of points in this proposed architecture. The 

W16 rotators in the architecture are implemented as shift-and-add using LUTs, which is hardware efficient 

due having small size. 

As a result, the proposed approach achieves the highest performance above all conventional million point 

FFT. Furthermore, the proposed design obtains a high SQNR and a power consumption of 3.436 W. 

[3] Authors Pramod Kumar & others presented an area and energy-efficient architecture for radix-2 DIT 

for integer valued FFT. The proposed configuration for point in-place Decimation in Time Real Fast 

Fourier Transform (DIT RFFT) computation is illustrated in Figure 5. This structure comprises an 

Arithmetic Unit (AU), a Data Storage Unit (DSU), a Twiddle-Factor Storage Unit (TFSU), and a Control 

Unit (CU). In every cycle, the arithmetic unit receives a packet having four samples from the data storage 

unit and two twiddle factors from the twiddle factor storage Unit. Over the first 12 clock cycles within a 

16-clock cycle period, it executes a 4-point Butterfly operation in each cycle, generating a 4- point 

intermediate-output data block which is written by into data storage unit. During the final 4 clock cycles of 

the 16-clock cycle , the FFT coefficients are obtained as the output of the AU. 

 

The proposed structure having significantly less area-delay product and less energy for each sample than 

the existing folded structures for RFFT. 

 

Fig .5. structure of DIT RFFT 

 

 

Fig.6. Structure of arithmetic unit (AU) 
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Fig.7. Structure of data-selector (DS) 

[4] Author Mario Garrido and Pedro Malagon presents a CM FFT that uses constant multipliers 

for evaluating the rotations. This achievement is realized through the grouping of data that undergo 

rotations by identical angles, directing them along a common path within the architecture. The proposed 

approach serves a dual purpose: firstly, it dissects the rotations at the FFT stages into a combination of 

constant rotators, and secondly, it ensures that data requiring identical constant rotations follow the same 

trajectory   within  the   architecture.  To facilitate   this, supplementary shuffling 

circuits are incorporated to ensure that each constant rotator gets the relevant data. The 

deployment of constant multipliers at virtually all stages of the architecture 

significantly  mitigates   the complexity associated with rotators. Contrary to W8 and W16 

rotators, constant rotators exclusively perform rotations by a single constant angle, eliminating 

the need for multiplexers for selection among different angles. Even after choosing the 

constant multiplier, it doesn’t guarantee the reduction in resultant area of FFT, despite having less

  

complexity,  the architecture incorporates greater number of shuffling circuits.   

the   proposed FFT architecture might not good as area wise but it manifests in its throughput. 

This is attributed to the  lower  level of  complexity   of the 

rotators, which enables deep pipelines which significantly shortens the critical path of the 

architecture. As a result, there is an increase in clock frequency and throughput. 

 

However, the complex multiplier quadratically gets increases as the number of stages increases. Thus 

For the large FFTs, good alternatives are radix-24 or radix-25. Experimental results of a 1024-point 4- 

parallel radix-24 CM FFT provide throughput having 20% higher than the highest throughput among 

previously developed 1024-point 4-parallel pipelined architectures on FPGA . 

 

 

[5] Authors Kevin Bowlyn and Sena Hounsinou presented a DA-CBNS based multiplier-less approach 

for computing Radix-2 FFT. Every butterfly structure in the DA-CBNS approach only requires one 

complex multiplication, one addition, and two complex additions/subtractions. Achieving this 
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involves initially converting each input of the butterfly structure to the (-i+j) CBNS. Subsequently, 

multiplier-less Differential Arithmetic (DA) implementation is used for Multiplication circuit. here authors 

considered  DA  structure  based  in  ROM having no dedicated multiplierer and having 

minimal memory utilization. 

In a typical DA structure, binary inputs are customary, and it uses an arithmetic right shift during the 

accumulation phase for multiplication to preserve the sign of the product. However, the design by Kevin 

Bowlyn and Sena Hounsinou deviates by utilizing a logical shifter in place of an arithmetic shifter, as the 

latter lacks a sign bit. Another enhancement involves storing constant twiddle factor using a non-Look-Up 

Table (LUT) ROM component instead of a ROM memory bank. Due to this modification, the DA-LUT 

was implemented using logic gates, which led to a small increase in the number of gates. But this 

modification also results in a 100% decrease in memory usage. All of these changes added up to our 

suggested multiplier unit, which comprised of a CBNS adder unit, a register that retain the CBNS adder 

output, a Parallel In Serial Out (PISO) shift register, a non-LUT ROM base to store the twiddle factor 

required to compute the DA-CBNS FFT structure, and a logical right-shift unit for the accumulation phase. 

 

Throughout each stage of the butterfly structure, these steps are iteratively performed, maintaining the (-

1+j) base for the initial input operands, resulting in a product also in the same base. The utilization of 

CBNS contributes to an overall better performance compared to the 

existing Radix-2 FFT structure. Despite the increased number of addition operations due to these 

modifications, the proposed design exhibits a performance improvement comparison with the FFT 

implementations having dedicated multipliers, DA-only, or CBNS alone.This is slightly similar as 

Tarek Belabed, Sabeur Jemmali , Chorkri Souani [1] has proposed in their paper. 

 

[6] Authors Ghattas Akkad & others presented a study dedicated to accelerating signal processing  

algorithms  using  High-Level Synthesis (HLS) tools for digital communication applications. In 

contrast to rudimentary Hardware Description Language (HDL) implementations, HLS brings 

forth flexibility in adopting diverse directives and constraints to achieve requisite performance 

while upholding speed, resource utilization, and development efficiency. Notably, HDL provides 

the possibility of inferring particular architectures using a structural methodology, which makes it 

easier to implement vendor-specific core modules and customized intellectual property (IP). 

The research delves into the effects of variation in frequency, in addition to the application of various 

coding architectures and styles, input delay, latency, and speed for both HLS and HDL methodologies. 

Although HDL design approaches produce low-level, optimized implementations by following stringent 

coding guidelines, HLS tools produce results that are almost identical. 

Furthermore, HLS enables the use of various program directives or optimization techniques dependent 

on compilers, eliminating the necessity for extensive recoding. This comparative exploration 

underscores the adaptability and efficiency of HLS tools in signal processing algorithm acceleration 

for digital communication purposes . 



 
 

131 | P a g e  
 

Authors Prasanna Kumar Godi, Battula Tirumala Krishna & others introduces a multiplier-free FFT design 

that innovatively replaces traditional twiddle factors with the UMA method's input. This UMA (Unified 

Multiplier-less Architecture) method operates through shift and addition operations, eliminating the need 

for division. The design encompasses six stages of a 64- point FFT, as depicted in Figure 8. Both the real 

and imaginary parts serve as input values for the FFT, with clock values provided at each stage of the 

implementation. The input data for the FFT is 16-bit in length. 

During the NWT (Number of Wasted Terms) computation, the design calculates power- of-2 operations 

using carefully crafted shift operators. Control signals, such as shift ctrl0 and shift ctrl1, manage these shift 

operations, transmitting the necessary twiddle factors. Remarkably, the UMA scheme's output replaces the 

conventional twiddle factor generation in the FFT. The UMA method executes shift and add operations to 

produce the required output, obviating the need for complex multiplier blocks typically used in twiddle 

factor multiplication. Consequently, the UMA- based FFT design operates without the requirement for 

complex multipliers, offering a streamlined and efficient approach to FFT computation. 

 

 

 

 

 

 

 

 

 

Fig.8.Six stage of radix-2 64 point FFT based on UMA 

 

Comparison Result 

This section presents some comparison between the FFT algorithm that is reviewed in upper section. The 

comparison is done on the basis of hardware required, power and performance. 

The comparison is done for Radix-2 FFT. 

 

Here we can see that all the architectures has some kind of drawback in terms of power, speed or LUTs so 

we cannot suggest any architecture for universal use and all the design are tested on Different FPGA with 

different configurations so it is hard to point out one. 

When speed is concern we would go with the structure [2] because of its Single-Delay Feedback system 

which provide ability to architecture to handle single-path input and process one sample per clock cycle 

efficiently which result is higher speed of computation. Although seem like its has very high power 

consumption actually it is not, it is happens because in this architecture used 1-million points for 

computation. 
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 But if power is concern structure [3] and structure [7] turns out to be more efficient than others. this is 

happening due to the multiplier-less approach which both are exhibiting but it comes at the cost of speed. 

Which make them not suitable for some applications  such  as  astronomical  signal processing and 

complex image processing where data size is very large. 

 

Conclusion 

In this work we have presented several FFT computational algorithm with some hardware 

implementation and optimization. Some of proposed architecture align toward less computation 

and some of has balance between hardware and its computational power but the structure [2] 

comes out to be best. Due to these characteristics, the design is appropriate for DSP applications 

where performance and efficiency are crucial, like imaging in the medical domai. 

Structure 

of [7] for 

32-point 

998 400 0.003358 

Structure 

of [1] for 

32- point 

22179 N.A N.A 

Structure 

of [2] 

16827 233 3.436 

Structure 

of [4] for 

1024- 

point 

V6-2576 

V7-2631 

V6-475 

V7- 680 

N.A 

1.68 

Structure 
of [5] 

16-point 

38072 75.001 0.65244 

Structure 

of [6] 

8-point 

1680 196.539 N.A 

NAME LUTS Frequency 

(MHz) 

Power(w) 

Structure 

of {3] 

32 -point 

N.A N.A 0.0029 



 
 

133 | P a g e  
 

 

 

References 

[1] Tarek Belabed, Sabeur Jemmali , Chorkri Souani “FFT implementation and optimization on FPGA” 

4th International Conference on Advanced Technologies For Signal and Image Processing - ATSIP 

2018 March 21-24, 2018 

[2] Hans Kanders, Tobias Mellqvist, Mario Garrido, Kent Palmkvist, and Oscar Gustafsson, “A 1-Million 

Point FFT on a single FPGA” Ieee transactions on circuits and systems–i: regular papers, vol. 66, no. 

10, October 2019 

[3] Pramod Kumar Meher, Basant Kumar Mohanty Sujit Kumar Patel, Soumya Ganguly, and 

Thambipillai Srikanthan, “Efficient VLSI Architecture for decimation-in-Time Fast Fourier 

Transform of real-Valued Data”, Ieee transactions on circuits and systems—I: regular papers, vol. 62, 

no. 12, December 2015 

[4] Mario Garrido and Pedro Malagon,” The Constant Multiplier FFT”, ieee transactions on circuits  and  

systems–I:  regular  papers, ( Volume: 68,Issue:1 January 2021) 

[5] Kevin Bowlyn and Sena Hounsinou “An Improved Distributed Multiplier -less Approach for Radix-2 

FFT”, ieee letters of the computer society, vol. 3, no. 2, july-december 2020 

[6] Ghattas Akkad, Ali Mansour , Bachar ElHassan , Frederic Le Roy , Mohamad Najem “FFT Radix-2 

and Radix-4 FPGA Acceleration Techniques Using HLS and HDL for Digital Communication 

Systems”, 2018 IEEE International Multidisciplinary Conference on Engineering Technology 

(IMCET), 06 January 2019. 

[7] Prasanna Kumar Godi, Battula Tirumala Krishna , Pushpa Kotipalli, “Design optimisation of 

multiplier-free parallel pipelined FFT on field programmable gate array”, IET Circuits, Devices & 

Systems ISSN 1751-858X Received on 27th November 2019 Revised 2nd July 2020 Accepted on 6th 

July 2020 E-First on 22nd October 2020 


