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ABSTRACT 

     The Modern biomedical imaging techniques include electrical impedance tomography. The objective is to 

capture images of human tissue's electrical characteristics. This non-invasive method has no known risks and is 

safe for the patient's health. That being said, the method's accuracy is poor. Due of their excellent noise 

resilience, linear inverse solvers find widespread use in medical applications. The solution that corresponds to a 

linear perturbation from an initial estimate can only be approximated by linear methods. A unique 

reconstruction method is suggested in this work. With the intention of replicating the sharp change in 

conductivity at the boundaries between tissues or organs, a nonlinear approach is used to post-process the 

conductivity distribution following the application of a linear solution. The suggested strategy is contrasted with 

three other popular ways using the results. The suggested technique significantly lowers the error associated 

with picture reconstruction while providing images of higher quality and more robustness against noise. 
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1. INTRODUCTION 

This document describes, and is written to conform to, author guidelines for the journals of AIRCC series.  It is 

prepared in Microsoft Word as a .doc document.  Although other means of preparation are acceptable, final, 

camera-ready versions must conform to this layout.  Microsoft Word terminology is used where appropriate in 

this document.  Although formatting instructions may often appear daunting, the simplest approach is to use this 

template and insert headings and text into it as appropriate. 

The imaging method known as electrical impedance tomography (EIT) is mostly employed in biomedical 

imaging[1]. By applying an electrical current at the volume's boundary and measuring the resulting potential 
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there, one can estimate the electrical impedance within a volume conductor [2]. Since the electrical properties of 

various biological tissues vary, EIT can be used in biomedical imaging. Even though EIT was first discussed in 

the 1970s [3], it is actually a relatively new technology since the high-quality, reasonably priced hardware, 

strong algorithms, and computational resources needed to address the challenge are still in their infancy [4]. 

Since an EIT inverse issue is extremely ill-posed and highly nonlinear [5], its solution is typically not trivial and 

requires an initial estimate of the conductivity distribution [6]. This inverse problem has been solved by a 

number of approaches, each with pros and cons. To put it briefly, those techniques can be divided into four 

different classes: machine learning (ML)-based techniques [12], direct nonlinear techniques [11], nonlinear 

iterative techniques [10], and linear approximation [9]. The conductivity distribution is estimated using linear 

methods as a tiny deviation from a first estimate [13]. The reconstruction technique can more accurately 

approximate a good solution to the inverse issue by assuming an initial conductivity distribution, for example, 

by applying a regularisation approach or prior distribution. Unlike linear methods, nonlinear algorithms do not 

heavily depend on an initial guess and have the potential to achieve higher accuracy in theory. Nonlinear 

methods, however, are less dependable in the majority of biomedical applications [14] because they are more 

susceptible to electrode displacements, modelling mistakes, and time-varying contours of the imaged region. 

Even while more precise reconstructions can be made using prior probability functions [15] in the presence of 

noisy data, the inverse issue is still ill-posed for these techniques, and even tiny modelling errors can result in 

significant distortions in the image [16]. 

Artificial neural networks, or ANNs, are AI algorithms that can find a more accurate approximation of a 

nonlinear problem's solution [17]. Applications of EIT inverse problems have demonstrated ANNs' rapidity in 

solving the inverse problem [18]. But because ANNs are built on machine learning, it seems difficult to provide 

accurate training data for practical biomedical applications [10]. The primary flaw in ANNs is that they cannot 

estimate and extrapolate solutions from data that hasn't been seen before. The latter is the main disadvantage of 

using ANNs to biomedical settings to tackle the EIT inverse problem. Since modelling errors and noise are not 

negligible in real clinical data, it is not possible to train an algorithm to simulate the conductivity distribution 

since noise cannot always be assessed beforehand. 
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approximations and an ANN in the inverse problem. A linear distribution is obtained after using the linear one-

step Gauss-Newton (GN) algorithm [19] to solve the inverse problem. The plan is to employ an artificial neural 

network (ANN) as a post-processing technique to correct the conductivity distribution and get over the inverse 

solver's shortcomings. A significantly higher level of noise robustness should be obtained by applying the ANN 

after resolving the EIT inverse problem. While modelling noise and potential distortions in the measured 

voltages is necessary when applying an ANN directly to the data, this intensive modelling is not necessary when 

applying the ANN to the output of a linear reconstruction algorithm to produce a good image. Since the linear 

algorithms are actually well-known for being incredibly noise-resistant, the resulting conductivity distribution is 

not significantly impacted by the modelling mistakes when contrasted with the measured voltages. Therefore, 

instead of using an ANN as an image reconstruction processor, training an ANN as a post-processor to improve 

the reconstruction quality should give a stronger robustness to measurement errors present in the measured data, 

even if they are not taken into account during the training phase. Figure 1 compares the suggested approach 

with current ANN-based solutions that are currently in use.  

Three popular approaches are compared to the suggested method: an inverse solver based on an ANN [21], a 

linear method [19], and a nonlinear iterative method [20]. The outcomes demonstrate the efficiency, stability, 

and speed of the suggested strategy. 

 

2. RESULT: PHANTOM EXPERIMENT 

The following formatting rules must be followed strictly.  This (.doc) document may be used as a template for 

papers prepared using Microsoft Word.  Papers not conforming to these requirements may not be published in 

the conference proceedings. 

Ionised water was filled in a cylindrical tank for phantom tests. After inserting two acrylic electrical insulators 

inside the phantom, data on the EIT test was gathered. The proposed post-processing method, an ANN utilised 

as an inverse solution, an iterative primal dual interior point method (PDIPM) solver, and a linear one-step GN 

were the four different approaches used to conduct EIT image reconstruction. Figure 2 displays cross-sections 

of the final photos, while Extended Data Figure 1 displays the 3D models. The fnite element (FE) model's 

border is in close proximity to the expected position, however the linear one-step GN approach accurately 

yields two distinct targets adjacent to it.  The conductivity distribution becomes smoothed out by the linear 

approach, making it challenging to accurately represent the two goals without producing noticeable errors. The 

existence of the blue colour in the reconstruction is caused by the underlying algorithm's smoothness, which 

tends to produce huge ringing artefacts. It is highly possible that these distortions will cause the conductivity 

distribution to be interpreted incorrectly. 

The iterative PDIPM approach, denoted by the green cylinders in Fig. 2(b), accurately displays two distinct 

targets at the intended location. In comparison to the linear one-step GN, the ringing artefacts, represented by 

the blue objects in the figure, are much reduced when a nonlinear method is used since it does not provide a 

smooth conductivity distribution. In Figs. 2(c) and (e), the EIT inverse problem is solved via the application of 

an ANN.  
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Image reconstruction from noisy data may result in significant mistakes if the artificial neural network (ANN) is 

trained without taking into account the noise that will inevitably be present in the measured data. The 

reconstruction produced from phantom data using such an ANN is displayed in Figure 2(c). The ANN produces 

deformed shapes instead of the two predicted cylindrical objects, although without producing any obvious 

ringing faults. This subpar picture reconstruction was predicted by the theory and by prior research, which 

shown that ANNs are both highly sensitive to modelling mistakes and noise in the observed data and capable of 

executing a decent reconstruction. A satisfactory reconstruction is provided by the conductivity distribution that 

this ANN was able to obtain. The predicted positions of the two distinct items, which are represented as two 

electrical insulators, appear to coincide with the original position. Moreover, there are no ringing artefacts or 

obvious distortion. 

Using the same measurement data, the proposed technique—which combines the linear reconstruction method 

with ANN—was evaluated. The ANN was trained using EIT reconstructions from the one-step GN solver, 

which were acquired using simulated data, in the suggested approach. The suggested post-processing technique 

and an ANN trained without taking noise in the measured data into account were used to create the image in 

Figure 2(d).  

The suggested approach outperformed an ANN utilised as an inverse solver trained without taking noise in the 

measurement data into account, as seen in Fig. 2(c). The image was only slightly affected by the poorly 

modelled and continuously fluctuating electrode positions, contact impedance, and model contours [22] when 

the inverse problem was solved using a linear approach, such as the one-step GN. However, for the suggested 

post-processing technique, training the ANN without taking into account the noise in the measured data still 

produced a good image that was comparable to the image produced by an ANN trained with noisy measurement 

data.  

 

Figure 2: Cross-sectional view of EIT reconstructions using various techniques using phantom data One-step 

GN (a), PDIPM (b), ANN as inverse solver trained without taking noise into account (c), ANN as inverse solver 
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trained with noisy data (e), ANN as inverse solver trained with noisy data (f), and suggested post-processing 

method and ANN trained with noisy data (d). The targets' locations are indicated by green circles. The 

normalised conductivity distribution is represented by the top bar. 

In order to lessen the need for extrapolation by the ANN, noise was added to the simulated voltage data for the 

final reconstruction, which is depicted in Fig. 2(f). This made the voltages more similar to the voltages 

measured from the phantom. This strategy produced a similar image when compared to the suggested post-

processing method and an ANN trained on noise-free data. The two targets are visible where they should be. 

The human eye cannot see the smoothness, ringing effects, or shape deformation. When the ANN was used as a 

post-processing technique, it produced a satisfactory reconstruction free of ringing artefacts and smoothness, in 

contrast to the ANN that was utilised as an inverse solver trained from noisy voltages. Furthermore, unlike what 

could occur with linear approaches, the generated images demonstrate that the two rebuilt objects did not shift 

towards the boundary of the FE model. 

Method PE #1 (%) PE #2 (%) |ΔRES| (%) SD (%) 

One-step GN  2.69   2.30   19.44 20.03 

PDIPM  1.95 2.10  8.10  22.91 

ANN (training: no noise)  2.60 1.76  6.90  17.87 

One-step GN + ANN 

(training: no noise)  

1.35   0.55  2.59   11.21 

ANN (training: noise)   0.97   0.37  2.35 10.35 

One-step GN + ANN 

(training: noise)  

1.01 0.50  2.27 10.55 

Table 1 shows the PE, |ΔRES|, and SD errors that were found when reconstructing from phantom data using 

various techniques. Fig. 2 displays corresponding images. On the left side of the images is target #1, and on the 

right side is target #2. 

 

To verify the visual impression that the suggested post-processing using ANN provided a considerable 

resistance to the noise present in the measurements, different errors23 were computed for each reconstruction. 

Table 1 presents the corresponding mistakes. Position error (PE) denotes a mistake in the target's position. PE 

was split into two mistakes, one for every distinct target. The left target in the Fig. 2 photos is referred to as the 

first target, while the right target is referred to as the second target. The FE model's radius is used to normalise 

PE inaccuracies. The one-step GN approach tended to push the reconstruction for the first target nearer the FE 

model's boundary, increasing the PE—which in this case reached 2.69%. As demonstrated in Fig. 2(c), the 

ANN employed as an inverse solver that was trained without taking noise into account produced a subpar 

outcome with a PE of 2.60%. ANN-based techniques yielded a PE of less than 1.35%, whereas other methods 

demonstrated remarkable accuracy in estimating the target's position. The ANN employed as an inverse solver 

trained without noisy data and the linear one-step GN produced the two highest PE for the second target, much 

like the first target did. When trained without taking noise into account, the ANN utilised as an inverse solver 

trainer produced an error of 1.76%, but the one-step GN produced an error of 2.30%. With an inaccuracy of 
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0.37%, the best estimate was produced by an ANN that was trained with noisy data and utilised as an inverse 

solver. Less than 0.2% greater than the ANN employed as an inverse solver trained with noisy data, post-

processing techniques did not surpass 0.55% (obtained with training without noise). 

The difference between the target's and the reconstructed object's areas can be understood as the difference of 

resolution (|ΔRES|) errors. huge smoothness was produced via the one-step GN approach, resulting in a huge 

|ΔRES| of 19.44%. When trained with the presence of noise, the suggested strategy yielded the lowest error, at 

2.27%. An ANN utilised as an inverse solver produced a low error of 2.35% when trained appropriately. On the 

other hand, the inaccuracy rose to 6.90% if the ANN was not trained appropriately. The suggested post-

processing produced a low error in all scenarios, irrespective of whether noise presence was taken into account 

during training (2.27%) or not (2.59%). As can be observed from Extended Data Fig. 1, additional |ΔRES| 

errors acquired at different heights of the 3D model are shown in Extended Data Table 1. These errors 

demonstrate that the suggested technique performed better than previous methods at different cross-sections. 

Likewise, 20.03% and 22.91%, respectively, were the big shape deformation (SD) errors obtained by the linear 

one-step GN technique and PDIPM. An artificial neural network (ANN) utilised as an inverse solution yielded 

an extremely low error of 10.35% when trained taking noise in the measurements into account. In the absence 

of such, the SD error may reach 17.87%. While training the ANN with noisy voltages consistently produced 

somewhat better results, training the ANN without taking the noise into account also produced a low error rate 

using the suggested post-processing strategy. Here, the standard deviation changed by less than 1%, from 

10.55% with noisy data during training to 11.21% with clean data. This observation demonstrates the suggested 

method's great stability and robustness against noise. 

In summary, Table 1 demonstrates that the suggested approach can provide a correct reconstruction of the EIT 

inverse problem without requiring a deep understanding of the data collecting equipment beforehand. 

The one-step GN solver's computational cost is made up of a straightforward matrix product. It takes 3,029.18 

seconds and 48.6GB of memory to compute the matrix. Nevertheless, the matrix can be computed prior to 

resolving the inverse problem since it is independent of the measurements. When using the one-step GN 

solution in this example, the reconstruction matrix was taken into consideration as known.  

Table 2 lists the amount of time and memory needed to solve the EIT inverse problem using various techniques. 

Using the one-step GN method, the EIT inverse problem could be handled in 0.1 seconds with only 0.6GB of 

data after the reconstruction matrix was known. In order to accomplish a reconstruction, the iterative PDIPM 

method needs a lot of memory and time. The issue is solved by this solution in 4,289 seconds and 65.46 GB of 

memory, but it converges to an exact reconstruction. In this case, the ANN-based inverse solver method took 

the shortest time—just 0.36 seconds and 0.38 GB. The suggested approach requires more time than these two 

solvers since it combines a one-step GN solver with an ANN. In this case, the ANN-based inverse solver 

method took the shortest time—just 0.36 seconds and 0.38 GB. The suggested approach requires more time 

than these two solvers since it combines a one-step GN solver with an ANN. Here, the suggested approach 

required just 1.1GB of memory to solve the inverse problem in 0.80 seconds. 

While the PDIPM can also solve the EIT problem very accurately, fast imaging applications cannot use this 

solution because of its iterative nature, which takes time and resources. The iterative PDIPM strategy requires 



 
 

21 | P a g e  

 

more than 100 times the amount of memory to solve the inverse problem and is over 4,000 times slower than 

the suggested post-processing solution. This means that costly hardware must be used, which is a significant 

disadvantage. 

 

 

 

Figure 3 shows the 3D EIT reconstructions of lung data using various techniques: one-step GN, PDIPM, ANN 

as inverse solver, trained by taking into account sources of errors, proposed method, trained by taking into 

account errors in measurement data, ANN as inverse solver, trained without taking into account errors, and 

proposed post-processing method, trained without taking into account errors. The distribution of normalised 

resistivity is provided at the top. In green are the electrodes. 

 

Lung data. 

The EIT data of a healthy individual were gathered24, and the same four techniques were used to rebuild the 

images. In this experiment, the subject's chest was surrounded by 16 electrodes in a single plane. Two 

comparable elliptical forms were anticipated to represent the lungs because the person was in good health. The 

conductivity patterns inside the FE models created from lung data using various techniques are displayed in 

Figure 3. Extra Information A cross-section from these FE models is displayed in Fig. 2. Extra Information The 

conductivity distribution at the electrode location, in the middle of the FE model, is depicted in Fig. 2.  

The one-step GN approach, which is commonly employed in real-time biomedical applications, produced a 

picture that showed two distinct targets, but it also included some smoothness and artefacts, which reduced the 
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quality of the reconstructed image. There were discernible ringing artefacts between the two lungs. These 

artefacts, which are shown as the blue area in Fig. 3(a), had to be removed since they may have caused the 

practitioner to interpret the results incorrectly and make an inaccurate diagnosis. 

While the plots in Figs. 3(c–f) depict divided lungs, the PDIPM result in Fig. 3(b) depicts a fused lung. When 

compared to Fig. 3(a), the accepted standard, Fig. 3(c) is distorted and Fig. 3(e) is slightly deformed. 

Furthermore, Figs. 3(d) and (f) are far better than Fig. 3(a) and the remaining plots in Fig. 3. 

The outcome of employing an ANN as an inverse solution was highly dependent on the simulated data that was 

used to train the ANN. In general, the better the outcome, the closer they were to the measured data. This 

comment suggested that a significant amount of modelling work would be needed to train an ANN to produce 

outstanding EIT picture reconstruction. Since this study examined time-distance EIT, the modelling required to 

take into account movement and model distortion with time, which resulted in electrode displacement, in 

addition to the patients' breathing activities. Additionally, studies have indicated that modelling efforts should 

take hardware-dependent noise in the measured data into account in order to get better results. The 

reconstruction using an ANN as the inverse solver is depicted in Figures 3(c) and (e). Whereas the ANN is 

trained by taking into account the existence of such artefacts in Fig. 3(e), it is trained by excluding noise, 

electrode movement, and model deformations in Fig. 3(c). Since the data were obtained at the conclusion of the 

inspiration and expiration phases, the image should show two comparable targets that correspond to the 

conductivity difference during the breathing cycle. Two distinct elliptical zones are seen if the ANN is trained 

while taking into account the various causes of errors, as in Fig. 3(e).  Despite the appearance of the lef lung 

being slightly smaller than the right, their diameters are rather similar and they are easily distinguishable from 

one another. However, as shown in Fig. 3(c), when the ANN is trained without taking into account the flaws 

and inaccuracies of the hardware, significant artefacts may arise, shapes may not match expectations, and it may 

become difficult to distinguish between the two distinct regions. 

Regarding the phantom studies, the suggested approach demonstrated reduced sensitivity to disturbances, 

motion, and mismeasurements. Images obtained using the suggested method are shown in Figures 3(d) and (f), 

respectively, by taking into consideration and not taking into consideration the various sources of mistakes 

during the training phase. The two lungs are distinguishable and visible in both situations. While there are some 

artefacts in Fig. 3(d), where the ANN is trained without taking into account any source of measurement error, 

the reconstruction's visual quality is noticeably better than that of the reconstruction based only on the ANN, as 

seen in Fig. 3(c). In contrast to the other nonlinear methods employed in this work, the suggested approach 

produced noticeably fewer artefacts. 

At last, the best representation of the conductivity difference in the lungs during the breathing cycle can be 

found in Fig. 3(f); the image shows no discernible artefact, two huge symmetrical forms, and low smoothness. 

However, this phase was not required to create a good image of two different targets identical to the lungs, even 

though taking modelling mistakes into account during the ANN's training enhanced the outcome. This finding 

helps significantly lower the modelling effort needed to train an ANN effectively for biological applications. 

The computer resources required for 3D EIT reconstruction were measured for each approach. The iterative 

PDIPM approach is slow and unsuitable for real-time monitoring, but generally providing high quality. The 
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one-step GN- and ANN-based approaches are significantly faster than the PDIPM method. On a CPU, the 

suggested method can solve the inverse problem in less than 0.3 seconds, and on a GPU or other specialised 

hardware, it should be even faster. Table 3 displays CPU time and memory usage. 

Different measurements were made during the breathing cycle, and each unique image was reconstructed to 

demonstrate the stability of the suggested method. The outcomes can be found in Extended Data Figs. 3–6. 

Despite the stability of the one-step GN approach, the pictures display relatively tiny lungs with ringing 

artefacts in between. The PDIPM technique produces high-quality images, but when the reference and measured 

signals are obtained at the same time as the breathing cycle (i.e., the end of expiration), it also produces huge 

artefacts instead of blank images. Although the ANN utilised as an inverse solver produced odd forms that were 

different from the expected shape of the lungs, it seemed stable. Ultimately, a precise and durable 

reconstruction was provided by the suggested approach. The generated images display two lungs of similar size 

and a good shape that is similar to the shape acquired from other imaging modalities, such as computed 

tomography, during a whole breathing cycle. 

 

3. CONCLUSIONS 

This research proposes a new reconstruction technique for 3D EIT. The suggested method combines the 

benefits of both linear and nonlinear approaches by providing near real-time image reconstruction, significant 

robustness against noise, and rough boundaries. While simulation results do not demonstrate a significant 

improvement over the current ANN-based methods, the new approach described in this research clearly shows 

improvements in phantom and lung data, particularly in producing high-quality images from noisy 

environments. Prior to using the ANN, solving the EIT issue with linear solvers helps to lower the influence of 

noise in the measured data and increases the stability of the nonlinear ANN. Because of its increased stability, 

an ANN may be trained to solve the EIT inverse problem using biomedical data without requiring a deep 

understanding of the hardware or human anatomy's physiology. The suggested strategy offers significantly 

more stability and increased robustness to previously unseen data when compared to a solution based solely on 

an ANN. The results demonstrate that using the suggested strategy, training an ANN capable of producing a 

high resolution image no longer requires a thorough understanding of the data gathering technology or the 

anatomy of the patient. 

This discovery means that the computationally intensive training process only needs to be completed once, after 

which any patient and any EIT hardware on the market can use the same set of weights and biases. In this work, 

CPU computations were made and Matlab was used to tackle the inverse difficulties. The authors think that 

real-time implementation of a high-quality, stable, and non-linear EIT image reconstruction of the lungs should 

be possible thanks to advancements in computer technology and a GPU-based implementation of the suggested 

technique. 

Methods 

A real phantom provided the phantom data. Electrodes were arranged in four layers within the cylindrical tank. 

There were eight distinct electrodes in each layer, for a total of 32 electrodes. neighbouring current patterns 

were employed for both current injection and measurements, which meant that every pair of electrodes used 
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matched two neighbouring electrodes on the same layer. Tu25's data collecting technology was utilised to 

obtain phantom data. This system injects current into each pair of two neighbouring electrodes that are on the 

same layer. 32 different voltages were measured for each current injection using the 32 pairs of neighbouring 

electrodes that were present at the volume conductor's boundary. After that, the current source moved to the 

next set of nearby electrodes, and 29 more measurements were taken. Ultimately, the picture reconstruction 

process included 928 measurements. 

The challenge posed by practical EIT applications is accurately simulating the volume conductor's shape and 

the electrode locations. The true boundary shape varies somewhat across patients and is constantly changing as 

they breathe, which affects the monitoring process. Additional inaccuracies arise from the electrode placing 

because of the occurrence of flaws in measuring the contour of the thoracic region. Additionally, a 

reconstruction in a fixed FE model can only provide an approximation answer because of movement that occurs 

during data capture between the measurement of the reference signal and the actual frame. It is well known that 

nonlinear iterative techniques are quite sensitive to the mismatch between the real volume conductor shape and 

the boundary of the FE model. 

Using two different sets of measurements, often obtained at two different times, and taking into account the 

difference between these two measurements to perform the reconstruction is known as the difference EIT 

technique. This method aids in mitigating errors resulting from imprecise models. But only one FE model is 

needed to picture the conductivity distribution in the inverse situation. Put another way, the difference EIT may 

only aid in reducing the mistakes caused by imprecise modelling; it cannot completely eliminate them if the 

volume conductor's shape changes while the measurement is being made. 

It has been demonstrated that when educated appropriately, ANNs are capable of handling these problems. In 

order for an artificial neural network (ANN) to be trained to take into account modelling errors that may arise in 

real-world biomedical applications, the training data must contain these kinds of aberrations. Different FE 

models have to be used to address the forward problems in order to train the ANNs from simulated data in this 

study. Fourier coefficients of the typical human thorax were used to create and deform a circular FE model for 

the EIT imaging of the lung data. In order to achieve various thorax-like shapes during the training phase, the 

Fourier coefcients were altered with a random weight of up to 10% of the original coefcient. Furthermore, two 

distinct FE models were employed to address the forward problems in the homogeneous and inhomogeneous 

instances, respectively, in light of the work's emphasis on difference EIT. Afterwards, other models were used 

to tackle the forward difficulties. Ultimately, the inverse problem for the suggested post-processing solution was 

resolved in a FE model of the lungs that was obtained without changing the Fourier coefficients. 

The suggested approach was contrasted with two commonly used techniques for EIT reconstructions of the 

lungs as well as a reconstruction method that just used an ANN. 

 

EIT inverse solvers. 

Newton's gauss in one step. A popular direct linear reconstruction technique for real-time imaging applications 

is the one-step GN26. This approach has the benefit of not requiring iteration, which allows for the quick 

computation of the inverse problem's solution. This reconstruction approach, named after the mathematicians 
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Carl Friedrich Gauss and Isaac Newton, can be understood as a simplified linearized version of the nonlinear 

GN method. Actually, the nonlinear method's first step is the only one that is computed. This approach provides 

a quick and satisfactory reconstruction since, in the difference EIT, several of the full nonlinear method's 

parameters have very low identifiability and may thus be adjusted to constant values. 

The Technique of primal-dual interior points.  

Since the nonlinear PDIPM reconstruction method is iterative, estimating an answer to the inverse problem 

needs a significant amount of time and processing power. In both linear and nonlinear programming, barrier 

approaches are the fundamental foundation of Te PDIPM. Anthony V. Fiacco, Garth P. McCormick, and others 

investigated the concept of encoding the feasible set with a barrier and creating barrier techniques in the early 

1960s27. These techniques belong to the class of simplex procedures, where the viable set28's border is 

followed by the solution. Karmarkar developed a brand-new algorithm known as Karmarkar's algorithm, which 

is exceptionally effective in real-world applications and executes in provably polynomial time29. This 

technique, subsequently named the PDIPM, can search at the interior of the feasible set rather than the boundary 

when compared to the simplex approaches. Later, in 2012, Borsic and Adler suggested solving the EIT inverse 

problem20 using the PDIPM approach, which produced excellent picture reconstructions with nonlinear 

conductivity distributions and rough borders. This algorithm was applied in this study using the L2 norm for the 

regularisation term and the L1 norm for the data. 

Originally developed for the Newton one-step error reconstructor (NOSER) algorithm30, the well-known prior 

probability function was employed with both the one-step GN solver and the PDIPM solver. 

Noise estimate 

2,000 EIT images with randomly selected targets were simulated in order to train the ANN. The forward and 

inverse issues were solved for each of these conductivity distributions. There were targets with random 

conductivity that were distinct from the backdrop in each of the 2,000 EIT photos. The EIDORS toolkit24 and 

Matlab's neural network toolbox, operating on an Intel Core I7-6700 CPU at 4GHz with 64GB of RAM and 

Ubuntu Linux, were utilised to obtain solutions for the forward and inverse problems. Once the forward 

problem was solved, noise was introduced into the voltages that were simulated. By examining the measured 

signals at the electrodes, the quantity of noise contributed was ascertained. 

A tenth-order bandpass filter focused on the injected current frequency was able to remove most of the noise, 

but some noise remained in the recorded data. It was interesting to train the ANNs with noisy data that was 

comparable to the data obtained from the phantom in order to lessen the need to extrapolate from the ANNs. 

The physical separation between the current source and the measurement electrodes determined the quantity of 

noise, which was not fixed. Every lung data measurement and phantom experiment has its own noise estimate. 

A 100 kHz sinusoidal waveform was used for the current injection. Each set of electrodes detected 20 voltages 

during a sine wave. 

These data were filtered, and the largest peak was taken into consideration for the EIT reconstruction. The 

observed data was then compared to a sine wave simulation to assess the noise. The noise was taken to be a 

WGN by approximating the level of noise in the measurements prior to filtering. The noise level was calculated 

using (1): 
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SNR (dB) = 10*log(mean(signal)2 / Mean(residual noise2) )                (1) 

In the end, an average of the signal-to-noise ratios for each of the 928 measurements was calculated over 500 

different frames. The estimated SNR was more than 50 dB when the measured signal was located in close 

proximity to the injected current. The SNR may, however, be less than 10 dB when measured at the other side 

of the phantom, which is mostly due to the medium's attenuation. It was feasible to replicate the noise by adding 

a WGN to the generated sine waves by presuming a WGN before filtering. After that, a noise model that 

approximated the noise found in the actual phantom tests was produced by mimicking the existence of a filter.  

Internal organs and movements may also be to blame for the noise levels in the lung tests. Therefore, it was 

thought to be a non-Gaussian noise. The measured signals' Fourier transform was analysed, and the 

measurement data was supplemented with non-Gaussian noise. 

Artifcial Neural Networks. 

The hidden layer of neurons employed radial basis functions (RBFs). The transfer function that was used in the 

output layer was linear. Studies have demonstrated that this particular ANN configuration can provide high-

quality EIT reconstructions from biological data. When using an artificial neural network (ANN) as an inverse 

solver, the number of neurons in the input layer is equal to the number of measurements (e.g., 208 neurons for 

the lung data, 928 neurons for the imaginary data). The number of neurons in the input layer for the post-

processing application is equal to the number of nodes in the FE model.  The hidden layer in this investigation 

consisted of 1,000 neurons with an RBF transfer function in both scenarios. Ultimately, the output layer 

included as many neurons as there were nodes in the FE model and produced an estimate of the conductivity 

distribution inside it. 

Training data were simulated in order to train the ANN for the phantom data. One or two cylindrical insulators 

were simulated to be present in a saline solution in those simulation data. The random electrical conductivity of 

each insulator was determined to be less than the background. The homogeneous background's electrical 

conductivity was not constant in those simulations; rather, it changed at random for each training sample. 

Following up to 2,000 distinct conductivity distribution simulations, the forward problems were solved both 

with and without taking distortions (movement) into account. To prevent committing the inverse crime, a very 

fine FE model that differs from the model used to solve the inverse problems and a second-order forward solver 

were employed while solving the EIT forward problems. 

Each lung in the scenario of the lungs was seen as an electrical insulator in relation to the backdrop 

conductivity. According to research, the lungs' electrical conductivity is stronger at the conclusion of the 

inspiration phase than it is at the end of the expiration phase. Previous research indicates that the lungs should 

have an electrical impedance of about 700Ω.m at the frequency of the injected current, or 100 kHz, at the end of 

expiration. By the time the inspiration phase ends, the electrical impedance should increase to a maximum of 

2,500Ω.m. The heartbeat and blood circulation within the body are two other elements that may influence the 

electrical characteristics of various tissues and materials passed by the electrical current. When a different pair 

of electrodes is employed for measurement, the difference in conductivity between the two different current 

injections is predicted to stay minimal and is therefore disregarded throughout the ANN's training. The 

background impedance in this study was arbitrarily chosen at 700Ω.m. Since differential EIT was employed in 
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this application, the background conductivity difference ought to have been invisible. Put another way, the 

spinal cord and blood vessels were invisible in the rebuilt image because there was no change in the 

conductivity surrounding them between two measurements. Consequently, these artefacts were disregarded 

when creating the training samples. While blood pressure variations and movement may theoretically be 

represented in the final image in real biological applications, ignoring them greatly simplifies the process of 

creating 2,000 training samples. The training of the RBF ANNs involved simulating the presence of two 

elliptical cylinders with random conductivities and sizes that varied within the range of potential electrical 

conductivities identified in earlier research. Following training using the particle swarm optimisation technique, 

the resultant artificial neural network (ANN) presumed the existence of two lungs, which seems a plausible 

assumption for biomedical imaging. Commonly used techniques for biomedical EIT applications were used to 

solve the forward and inverse challenges. 

Errors. 

A consensus called the Grau consensus reconstruction algorithm for EIT, or GREIT, attempted to offer 

normalised error definitions23. Various functions have been proposed for use as an error function for medical 

imaging applications31–33. The position error (PE), resolution (RES) error, and shape deformation (SD) were 

determined among these normalised definitions since they were significant. Although these normalised 

definitions were created for 2D EIT, they are readily applicable to 3D EIT problems as well. These errors are 

calculated in 2D EIT using a rasterized picture of the FE model. The study examined the resulting errors on 

several cross-sections of the Finite Element model. The difference of resolution |ΔRES|18 was employed since 

it was anticipated that RES would provide an estimate of the target's area. 

In the event that the phantom had multiple targets, a PE was calculated using the technique outlined by Martin 

and Choi21 for each distinct target. 
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